Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473965

ABSTRACT

The transient receptor potential (TRP) ion channels act as cellular sensors and mediate a plethora of physiological processes, including somatosensation, proliferation, apoptosis, and metabolism. Under specific conditions, certain TRP channels are involved in inflammation and immune responses. Thus, focusing on the role of TRPs in immune system cells may contribute to resolving inflammation. In this review, we discuss the distribution of five subfamilies of mammalian TRP ion channels in immune system cells and how these ion channels function in inflammatory mechanisms. This review provides an overview of the current understanding of TRP ion channels in mediating inflammation and may offer potential avenues for therapeutic intervention.


Subject(s)
Transient Receptor Potential Channels , Animals , Humans , Transient Receptor Potential Channels/metabolism , Immune System/metabolism , Inflammation/metabolism , Mammals/metabolism
2.
Mol Cell Biochem ; 479(4): 831-841, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37199893

ABSTRACT

Metastasis is the cause of poor prognosis in ovarian cancer (OC). Enhancer of Zeste homolog 2 (EZH2), a histone-lysine N-methyltransferase enzyme, promotes OC cell migration and invasion by regulating the expression of tissue inhibitor of metalloproteinase-2 (TIMP2) and matrix metalloproteinases-9 (MMP9). Hence, we speculated that EZH2-targeting therapy might suppress OC migration and invasion. In this study, the expression of EZH2, TIMP2, and MMP9 in OC tissues and cell lines was analyzed using The Cancer Genome Atlas (TCGA) database and western blotting, respectively. The effects of SKLB-03220, an EZH2 covalent inhibitor, on OC cell migration and invasion were investigated using wound-healing assays, Transwell assays, and immunohistochemistry. TCGA database analysis confirmed that the EZH2 and MMP9 mRNA expression was significantly higher in OC tissues, whereas TIMP2 expression was significantly lower than that in normal ovarian tissues. Moreover, EZH2 negatively correlated with TIMP2 and positively correlated with MMP9 expression. In addition to the anti-tumor activity of SKLB-03220 in a PA-1 xenograft model, immunohistochemistry results showed that SKLB-03220 markedly increased the expression of TIMP2 and decreased the expression of MMP9. Additionally, wound-healing and Transwell assays showed that SKLB-03220 significantly inhibited the migration and invasion of both A2780 and PA-1 cells in a concentration-dependent manner. SKLB-03220 inhibited H3K27me3 and MMP9 expression and increased TIMP2 expression in PA-1 cells. Taken together, these results indicate that the EZH2 covalent inhibitor SKLB-03220 inhibits metastasis of OC cells by upregulating TIMP2 and downregulating MMP9, and could thus serve as a therapeutic agent for OC.


Subject(s)
Acrylamides , Enhancer of Zeste Homolog 2 Protein , Ovarian Neoplasms , Humans , Female , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Ovarian Neoplasms/genetics , Cell Line, Tumor , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism , Matrix Metalloproteinase 9/genetics , Cell Movement/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic
3.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5830-5837, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114179

ABSTRACT

This study investigated the effect of Xiaoxuming Decoction(XXMD) on the activation of astrocytes after cerebral ischemia/reperfusion(I/R) injury. The model of cerebral IR injury was established using the middle cerebral artery occlusion method. Fluorocitrate(FC), an inhibitor of astrocyte activation, was applied to inhibit astrocyte activation. Rats were randomly divided into a sham group, a model group, a XXMD group, a XXMD+FC group, and a XXMD+Vehicle group. Neurobehavioral changes at 24 hours after cerebral IR injury, cerebral infarction, histopathological changes observed through HE staining, submicroscopic structure of astrocytes observed through transmission electron microscopy, fluorescence intensity of glial fibrillary acidic protein(GFAP) and thrombospondin 1(TSP1) measured through immunofluorescence, and expression of GFAP and TSP1 in brain tissue measured through Western blot were evaluated in rats from each group. The experimental results showed that neurobehavioral scores and cerebral infarct area significantly increased in the model group. The XXMD group, the XXMD+FC group, and the XXMD+Vehicle group all alleviated neurobehavioral changes in rats. The pathological changes in the brain were evident in the model group, while the XXMD group, the XXMD+FC group, and the XXMD+Vehicle group exhibited milder cerebral IR injury in rats. The submicroscopic structure of astrocytes in the model group showed significant swelling, whereas the XXMD group, the XXMD+FC group, and XXMD+Vehicle group protected the submicroscopic structure of astrocytes. The fluorescence intensity and protein expression of GFAP and TSP1 increased in the model group compared with those in the sham group. However, the XXMD group, the XXMD+FC group, and XXMD+Vehicle group all down-regulated the expression of GFAP and TSP1. The combination of XXMD and FC showed a more pronounced effect. These results indicate that XXMD can improve cerebral IR injury, possibly by inhibiting astrocyte activation and down-regulating the expression of GFAP and TSP1.


Subject(s)
Brain Ischemia , Reperfusion Injury , Rats , Animals , Astrocytes , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Infarction, Middle Cerebral Artery
4.
J Occup Med Toxicol ; 18(1): 26, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964292

ABSTRACT

BACKGROUND: Individuals in the workplace are exposed to various environments, tasks, and schedules. Previous studies have indicated a link between occupational exposures and an increased risk of chronic kidney disease (CKD). However, the social conditions of the work environment may also be a crucial contributing factor to CKD. Furthermore, individuals may encounter multiple occupational-related risk factors simultaneously, underscoring the importance of investigating the joint risk of different working conditions on CKD. METHODS: A prospective analysis of 65,069 UK Biobank participants aged 40 to 69 years without CKD at baseline (2006-2010) was performed. A self-administered questionnaire assessed working conditions and a working conditions risk score were developed. Participants who answered "sometimes" or "often" exposure to occupational heat or occupational secondhand cigarette smoke; involved in shift work or heavy workloads ("usually" or "always"), were grouped as high-risk working conditions. Each working condition was scored as 1 if grouped as high-risk, and 0 if not. The working conditions risk score was equal to the sum of these four working conditions. Cox proportional hazard regression models were used to estimate the associations between working conditions and CKD incidence. RESULTS: The mean follow-up time was 6.7 years. After adjusting for demographic, lifestyle, and working time factors, the hazard ratios for the development of CKD for heavy workloads, shift work, occupational secondhand cigarette smoke exposure, and occupational heat exposure were 1.24 (95%CI = 1.03, 1.51), 1.33 (95%CI = 1.10, 1.62), 1.13 (95%CI = 1.01, 1.26), 1.11 (95%CI = 0.99, 1.24), respectively. The risk of CKD was found to be significantly associated with an increasing working conditions risk score. Individuals with a working conditions risk score of 4 had an 88.0% (95% CI = 1.05, 3.35) higher risk of developing CKD when compared to those with a working conditions risk score of 0. CONCLUSIONS: Adverse working conditions, particularly when considered in combination, can significantly elevate the risk of chronic kidney disease (CKD). These results provide a reference for implementing measures to prevent CKD.

5.
Cell Rep ; 42(11): 113455, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37976159

ABSTRACT

Although single-cell multi-omics technologies are undergoing rapid development, simultaneous transcriptome and proteome analysis of a single-cell individual still faces great challenges. Here, we developed a single-cell simultaneous transcriptome and proteome (scSTAP) analysis platform based on microfluidics, high-throughput sequencing, and mass spectrometry technology to achieve deep and joint quantitative analysis of transcriptome and proteome at the single-cell level, providing an important resource for understanding the relationship between transcription and translation in cells. This platform was applied to analyze single mouse oocytes at different meiotic maturation stages, reaching an average quantification depth of 19,948 genes and 2,663 protein groups in single mouse oocytes. In particular, we analyzed the correlation of individual RNA and protein pairs, as well as the meiosis regulatory network with unprecedented depth, and identified 30 transcript-protein pairs as specific oocyte maturational signatures, which could be productive for exploring transcriptional and translational regulatory features during oocyte meiosis.


Subject(s)
Proteome , Transcriptome , Animals , Mice , Transcriptome/genetics , Proteome/metabolism , Oocytes/metabolism , Oogenesis/genetics , Gene Expression Profiling , Meiosis
6.
Front Psychol ; 14: 1227941, 2023.
Article in English | MEDLINE | ID: mdl-37809300

ABSTRACT

Introduction: Based on the ecological systems theory and the family systems theory, this study explores the mechanisms underlying the effects of maternal positive coparenting on adolescent ego-identity. Methods: This study employed the Maternal Positive Coparenting Scale to assess mothers, the Father Marital Satisfaction Scale to examine fathers, and the Adolescent Peer Relationship Scale, along with the Ego-Identity Scale, to evaluate adolescents. This comprehensive approach involved investigating 522 families, encompassing both parents and adolescents. Results: The results obtained indicate a significant positive correlation between maternal positive coparenting and adolescent ego-identity. Peer relationships mediated the relationship between maternal positive coparenting and adolescent ego-identity. Father marital satisfaction mediated the relationship between maternal positive coparenting and adolescent ego-identity insignificantly. Paternal marital satisfaction and adolescent peer relationship have a chain mediating role between maternal positive coparenting and adolescent ego-identity. The study contributes by offering insights from the perspectives of family and peer relationships for further enhancing the development of adolescent ego-identity.

7.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3882-3889, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37475080

ABSTRACT

This study aims to explore the effect of Xiaoxuming Decoction on synaptic plasticity in rats with acute cerebral ischemia-reperfusion. A rat model of cerebral ischemia-reperfusion injury was established by middle cerebral artery occlusion(MCAO). Rats were randomly assigned into a sham group, a MCAO group, and a Xiaoxuming Decoction(60 g·kg~(-1)·d~(-1)) group. The Longa score was rated to assess the neurological function of rats with cerebral ischemia for 1.5 h and reperfusion for 24 h. The 2,3,5-triphenyltetrazolium chloride(TTC) staining and hematoxylin-eosin(HE) staining were employed to observe the cerebral infarction and the pathological changes of brain tissue after cerebral ischemia, respectively. Transmission electron microscopy was employed to detect the structural changes of neurons and synapses in the ischemic penumbra, and immunofluorescence, Western blot to determine the expression of synaptophysin(SYN), neuronal nuclei(NEUN), and postsynaptic density 95(PSD95) in the ischemic penumbra. The experimental results showed that the modeling increased the Longa score and led to cerebral infarction after 24 h of ischemia-reperfusion. Compared with the model group, Xiaoxuming Decoction intervention significantly decreased the Longa score and reduced the formation of cerebral infarction area. The modeling led to the shrinking and vacuolar changes of nuclei in the brain tissue, disordered cell arrangement, and severe cortical ischemia-reperfusion injury, while the pathological damage in the Xiaoxuming Decoction group was mild. The modeling blurred the synaptic boundaries and broadened the synaptic gap, while such changes were recovered in the Xiaoxuming Decoction group. The modeling decreased the fluorescence intensity of NEUN and SYN, while the intensity in Xiaoxuming Decoction group was significantly higher than that in the model group. The expression of SYN and PSD95 in the ischemic penumbra was down-regulated in the model group, while such down-regulation can be alleviated by Xiaoxuming Decoction. In summary, Xiaoxuming Decoction may improve the synaptic plasticity of ischemic penumbra during acute cerebral ischemia-reperfusion by up-regulating the expression of SYN and PSD95.


Subject(s)
Brain Ischemia , Reperfusion Injury , Rats , Animals , Rats, Sprague-Dawley , Brain Ischemia/drug therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Infarction, Middle Cerebral Artery , Neuronal Plasticity , Reperfusion
8.
Tob Induc Dis ; 21: 58, 2023.
Article in English | MEDLINE | ID: mdl-37181462

ABSTRACT

INTRODUCTION: A large number of people around the world are exposed to the risks of passive smoking. This prospective study aimed to examine the association between secondhand smoke exposure, exposure time, and the incidence of chronic kidney disease (CKD) and determine whether this association was influenced by genetic susceptibility. METHODS: The study included 214244 participants of the UK Biobank who were initially free of CKD. Cox proportional hazards model was used to estimate the associations between secondhand smoke exposure time and the risks of CKD in people who have never smoked. The genetic risk score for CKD was calculated by a weighted method. The likelihood ratio test comparing models was used to examine the cross-product term between secondhand smoke exposure and genetic susceptibility to CKD outcomes. RESULTS: During a median of 11.9 years of follow-up, 6583 incidents of CKD were documented. Secondhand smoke exposure increased the risk of CKD (HR=1.09; 95% CI: 1.03-1.16, p<0.01), and a dose-response relationship between CKD prevalence and secondhand smoke exposure time was found (p for trend<0.01). Secondhand smoke exposure increases the risk of CKD even in people who never smoke and have a low genetic risk (HR=1.13; 95% CI: 1.02-1.26, p=0.02). There was no statistically significant interaction between secondhand smoke exposure and genetic susceptibility to CKD (p for interaction=0.80). CONCLUSIONS: Secondhand smoke exposure is associated with higher risk of CKD, even in people with low genetic risk, and the relationship is dose dependent. These findings change the belief that people with low genetic susceptibility and without direct participation in smoking activities are not prone to CKD, emphasizing the need to avoid the harm of secondhand smoke in public places.

9.
J Environ Manage ; 329: 117104, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36603322

ABSTRACT

The quantitative description of the equilibrium data by the isotherm models is an indispensable link in adsorption studies. The previous review papers focus on the underlying assumptions, fitting methods, error functions and practical applications of the isotherm models, usually ignoring their curve characteristics, selection criteria and common controversies. The main contents of this review include: (i) effect of the model parameters on the isotherm curves; (ii) determination of the site energy distribution; (iii) selection criteria of the isotherm models; and (iv) elimination of some common controversies. It is of great significance to reveal the curve characteristics for selecting a proper isotherm model. The site energy distribution is conducive to understanding the physicochemical properties of the adsorbent surface. The complete isotherm is recommended to be correlated with the experimental data. The model parameter qmax should be cautiously adopted for comparison of the adsorbent performance. The residual plot can be used to diagnose the fitting quality of the isotherm models further. This review also addresses some common mistakes and controversies and thereby avoids their propagation in future publications.


Subject(s)
Adsorption , Kinetics
10.
Sci Total Environ ; 857(Pt 2): 159459, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36252670

ABSTRACT

Microbial community structure plays a crucial part in soil organic carbon (SOC) decomposition and variation of rhizosphere priming effects (RPEs) during plant growth. However, it is still uncertain how bacterial community structure regulates RPEs in soil and how RPE patterns respond to plant growth. Therefore, we conducted an experiment to examine the RPE response to plant growth and nitrogen (N) addition (0 (N0), 150 (N150), and 300 (N300) kg N ha-1) using the 13C natural abundance method in a C3 soil (paddy soil) - C4 plant (maize, Zea mays L.) system; we then explored the underlying biotic mechanisms using 16S rRNA sequencing techniques. Networks were constructed to identify keystone taxa and to analyze the correlations between network functional modules of bacterial community and C decomposition. The results indicated that negative and positive RPEs occurred on Day 30 and Day 75 after maize planting, respectively. Bacterial community structure significantly changed and tended to shift from r-strategists toward K-strategists with changing labile C: N stoichiometry and soil pH during plant growth stages. The different network modules of bacterial community were aggregated in response to RPE pattern variation. Caulobacteraceae, Bacillus, and Chitinophagaceae were keystone taxa on Day 30, while Gemmatimonas, Candidatus Koribacter, and Xanthobacteraceae were keystone taxa on Day 75. Moreover, keystone taxa with different C utilization strategies were significantly different between the two growth stages and related closely to different RPE patterns. This study provides deeper insights into the network structure of bacterial communities corresponding to RPE patterns and emphasizes the significance of keystone taxa in RPE variation.


Subject(s)
Microbiota , Rhizosphere , Soil/chemistry , Carbon , Soil Microbiology , RNA, Ribosomal, 16S , Plants , Bacteria , Zea mays
11.
Anal Chim Acta ; 1236: 340589, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36396240

ABSTRACT

The latest research shows that the expression level of microRNA-141 can predict the number of prostate cancer cells in the human body and has become an important biomarker. In this paper, an all-carbon sandwich self-powered biosensor based on graphene and carbon cloth is constructed for the highly sensitive detection of the prostate tumor marker miRNA-141. First, gold nanoparticles modified carbon cloth is applied for substrate electrode, and bilirubin oxidase is then immobilized on it to prepare the biocathode of the biofuel cell. Then, aptamer 1 is immobilized on gold nanoparticles-modified carbon cloth as the electrode substrate. The bioconjugate is prepared by immobilizing the aptamer 2-glucose oxidase complex on gold nanoparticles/graphene. In the biofuel cell-based self-powered sensing system, when the target microRNA-141 is present, it undergoes complementary base pairing with aptamer 1 and aptamer 2, and the bioconjugates are immobilized on the anode to form the sandwich structure. The enzyme on the anode undergoes an oxidation reaction to catalyze the reduction of oxygen, and the electrochemical respond of the system increases significantly. The results show that the concentration of microRNA-141 is proportional to the open-circuit voltage value ranging from 0.0001 to 1000 pmol/L with a detection limit of 50 amol/L (S/N = 3). The method has high sensitivity and excellent selectivity and can be applied to sensitively detect tumor marker microRNA-141 in biological matrix.


Subject(s)
Biosensing Techniques , Graphite , Metal Nanoparticles , MicroRNAs , Humans , Gold/chemistry , Carbon , Graphite/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , MicroRNAs/chemistry
12.
Fa Yi Xue Za Zhi ; 38(4): 526-532, 2022 Aug 25.
Article in English, Chinese | MEDLINE | ID: mdl-36426699

ABSTRACT

The oral cavity is the second largest microbial bank in humans after the intestinal canal, colonizing a large number of microorganisms including viruses, bacteria, archaea, fungi and protozoa. The great number of microbial cells, good DNA stability, and individual has a unique microbial community, these characteristics make the human microbiome expected to become a new biomarker for forensic individual identification. This article describes the characteristics of human oral microorganisms and microbial molecular markers in detail, analyzes the potential application value of microorganisms in forensic individual identification, and reviews the research progress of human oral microorganisms in forensic individual identification.


Subject(s)
Microbiota , Humans , Forensic Medicine
13.
Front Endocrinol (Lausanne) ; 13: 995028, 2022.
Article in English | MEDLINE | ID: mdl-36246918

ABSTRACT

Backgrounds: Ectopic fat deposition is closely related to chronic kidney disease (CKD). Currently, there are few population studies that have been conducted to determine the relationship between renal parenchyma fat deposition and the risk of CKD among patients with type 2 diabetes mellitus (T2DM). Therefore, we employed magnetic resonance imaging (MRI) to detect renal parenchyma fat content in individuals with T2DM, expressed as renal fat fraction (FF), to explore whether renal FF is an important risk factor for CKD in patients with T2DM. Methods: In this cross-sectional study, 189 subjects with T2DM were enrolled. CKD was defined as the estimated glomerular filtration rate (eGFR)<60 mL/min/1.73m2. Measurement of the renal FF was performed on a 3.0-T MRI (MAGNETOM Skyra, Siemens, Erlangen, Germany). Binary logistic regression was used to determine the association between tertiles of renal FF and risk of CKD. Receiver-operator characteristic (ROC) curves were constructed to evaluate the sensitivity and specificity of renal FF in detecting CKD in T2DM patients. Results: The patients were divided into three groups according to tertiles of the renal FF level (2.498 - 7.434). As renal FF increases, patients tend to be older, and more abdominally obese, with a decreased eGFR (p<0.05). After adjustment for potential confounders, patients in the highest tertile of renal FF had a significantly increased risk of CKD than those in the lowest tertile (odds ratio (OR) = 3.98, 95% confidence interval (CI) = 1.12 - 14.09, p = 0.032), and the area under the ROC curve for this model was 0.836 (0.765-0.907). Conclusions: The renal FF is significantly independently associated with CKD in patients with T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Renal Insufficiency, Chronic , Cross-Sectional Studies , Diabetes Mellitus, Type 2/pathology , Glomerular Filtration Rate , Humans , Kidney/diagnostic imaging , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/diagnosis
14.
Front Endocrinol (Lausanne) ; 13: 873318, 2022.
Article in English | MEDLINE | ID: mdl-35721706

ABSTRACT

Background and Objectives: The study aimed to evaluate the performance of a predictive model using the kidney failure risk equation (KFRE) for end-stage renal disease (ESRD) in diabetes and to investigate the impact of glomerular filtration rate (GFR) as estimated by different equations on the performance of the KFRE model in diabetes. Design Setting Participants and Measurements: A total of 18,928 individuals with diabetes without ESRD history from the UK Biobank, a prospective cohort study initiated in 2006-2010, were included in this study. Modification of diet in renal disease (MDRD), chronic kidney disease epidemiology collaboration (CKD-EPI) or revised Lund-Malmö (r-LM) were used to estimate GFR in the KFRE model. Cox proportional risk regression was used to determine the correlation coefficients between each variable and ESRD risk in each model. Harrell's C-index and net reclassification improvement (NRI) index were used to evaluate the differentiation of the models. Analysis was repeated in subgroups based on albuminuria and hemoglobin A1C (HbA1c) levels. Results: Overall, 132 of the 18,928 patients developed ESRD after a median follow-up of 12 years. The Harrell's C-index based on GFR estimated by CKD-EPI, MDRD, and r-LM was 0.914 (95% CI = 0.8812-0.9459), 0.908 (95% CI = 0.8727-0.9423), and 0.917 (95% CI = 0.8837-0.9496), respectively. Subgroup analysis revealed that in diabetic patients with macroalbuminuria, the KFRE model based on GFR estimated by r-LM (KFRE-eGFRr-LM) had better differentiation compared to the KFRE model based on GFR estimated by CKD-EPI (KFRE-eGFRCKD-EPI) with a KFRE-eGFRr-LM C-index of 0.846 (95% CI = 0.797-0.894, p = 0.025), while the KFRE model based on GFR estimated by MDRD (KFRE-eGFRMDRD) showed no significant difference compared to the KFRE-eGFRCKD-EPI (KFRE-eGFRMDRD C-index of 0.837, 95% CI = 0.785-0.889, p = 0.765). Subgroup analysis of poor glycemic control (HbA1c >8.5%) demonstrated the same trend. Compared to KFRE-eGFRCKD-EPI (C-index = 0.925, 95% CI = 0.874-0.976), KFRE-eGFRr-LM had a C-index of 0.935 (95% CI = 0.888-0.982, p = 0.071), and KFRE-eGFRMDRD had a C-index of 0.925 (95% CI = 0.874-0.976, p = 0.498). Conclusions: In adults with diabetes, the r-LM equation performs better than the CKD-EPI and MDRD equations in the KFRE model for predicting ESRD, especially for those with macroalbuminuria and poor glycemic control (HbA1c >8.5%).


Subject(s)
Diabetes Mellitus , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Adult , Glomerular Filtration Rate , Glycated Hemoglobin , Humans , Prospective Studies
15.
Journal of Forensic Medicine ; (6): 526-532, 2022.
Article in English | WPRIM (Western Pacific) | ID: wpr-984147

ABSTRACT

The oral cavity is the second largest microbial bank in humans after the intestinal canal, colonizing a large number of microorganisms including viruses, bacteria, archaea, fungi and protozoa. The great number of microbial cells, good DNA stability, and individual has a unique microbial community, these characteristics make the human microbiome expected to become a new biomarker for forensic individual identification. This article describes the characteristics of human oral microorganisms and microbial molecular markers in detail, analyzes the potential application value of microorganisms in forensic individual identification, and reviews the research progress of human oral microorganisms in forensic individual identification.


Subject(s)
Humans , Microbiota , Forensic Medicine
16.
Cell Death Dis ; 12(11): 1069, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34759275

ABSTRACT

Mounting studies have substantiated that abrogating autophagy contributes to cardiac hypertrophy (CH). Sirtuin 1 (SIRT1) has been reported to support autophagy and inhibit CH. However, the upstream regulation mechanism behind the regulation of SIRT1 level in CH remains unclear. Circular RNAs (circRNAs) are vital modulators in diverse human diseases including CH. This study intended to investigate the regulatory mechanism of circRNA on SIRT1 expression in CH. CH model was established by angiotensin II (Ang II) fusion or transverse aortic constriction (TAC) surgery and Ang II treatment on hiPSC-CMs and H9c2 cells in vitro. Our results showed that circ-SIRT1 (hsa_circ_0093884) expression was downregulated in Ang II-treated hiPSC-CMs, and confirmed that its conserved mouse homolog circ-Sirt1 (mmu_circ_0002354) was expressed at low levels in Ang II-treated H9c2 cells and TAC-induced mice model. Functionally, circ-SIRT1/circ-Sirt1 attenuated Ang II-induced CH and induced autophagy in hiPSC-CMs and H9c2 cardiomyocytes. Mechanistically, circ-SIRT1 could upregulate its host gene SIRT1 at the post-transcriptional level by sponging miR-3681-3p/miR-5195-3p and stabilized SIRT1 protein at the post-translational level by recruiting USP22 to induce deubiquitination on SIRT1 protein. Further, SIRT1 knockdown could rescue the effect of circ-SIRT1 upregulation on Ang II-induced CH and autophagy in vitro and in vivo. In conclusion, we first uncovered that circ-SIRT1 restrains CH via activating SIRT1 to promote autophagy, indicating circ-SIRT1 as a promising target to alleviate CH.


Subject(s)
Autophagy/genetics , Cardiomegaly/genetics , RNA, Circular/genetics , Sirtuin 1/metabolism , Animals , Cardiomegaly/pathology , Disease Models, Animal , Humans , Mice , Transfection , Up-Regulation
17.
World J Clin Cases ; 9(18): 4553-4558, 2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34222422

ABSTRACT

BACKGROUND: A twin pregnancy can carry greater risks than singleton pregnancies. About 60 in 100 twin pregnancies result in spontaneous birth before 37 wk, which is associated with several complications in the premature babies. Clinical detection of biomarkers may help to predict the possibility of premature birth so that corresponding interventions can be given to the pregnant women in a timely manner, in order to reduce the risk of preterm birth and improve the outcomes of the newborn infants. AIM: To explore the clinical value of transvaginal ultrasound measurement of cervical length combined with insulin-like growth factor binding protein-1 (IGFBP-1) hyperphosphorylation in cervical secretions as predictors of preterm delivery in twin pregnancies. METHODS: A total of 254 pregnant women with twin pregnancies, who were admitted to Hainan General Hospital and underwent maternity examination, were selected as the study subjects from January 2015 to December 2018. All participants received transvaginal ultrasound measurement of cervical length and phosphorylated IGFBP-1 (phIGFBP-1) test between 24 and 34 wk gestation. The pregnancy outcomes were analyzed. RESULTS: Of the women with a positive phIGFBP-1 test result, preterm birth rate was higher in those with a cervical length ≤ 25 mm than those with a cervical length > 25 mm (all P < 0.05). Similarly, in women with a negative phIGFBP-1 test result, preterm birth rate was higher in those with a cervical length ≤ 25 mm than those with a cervical length > 25 mm (all P < 0.05). The sensitivity, specificity, and positive and negative predictive values of the phIGFBP-1 test combined with the cervical length test were 95.71%, 91.21%, 95.12% and 92.22%, respectively, for the prediction of preterm birth. CONCLUSION: Cervical length combined with phIGFBP-1 tests is of value for the prediction of outcomes of preterm delivery in twin pregnancies.

18.
Microb Pathog ; 157: 105012, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34062228

ABSTRACT

Classical swine fever (CSF) is one of the most epidemic viral diseases in swine industry. The causative pathogen is CSF virus (CSFV), a small enveloped RNA virus of Flaviviridae family. Claudin-1 was reported to be involved in the infections of a number of viruses, including many from Flaviviridae family, but no studies have investigated the role of porcine claudin-1 during CSFV infection in PK-15 cells. In this study, on the one hand, we demonstrated that CSFV infection reduced the claudin-1 expression at both mRNA and protein levels; on the other hand, CSFV infection was enhanced after claudin-1 knockdown, but inhibited by claudin-1 overexpression in a dose-dependent manner. Furthermore, negative correlation was demonstrated between the claudin-1 expression and CSFV titer. In conclusion, claudin-1 might be a barrier for CSFV infection in PK-15 cells, while CSFV bypasses the barrier through lysosome mediated degradation of claudin-1, which could be repressed by bafilomycin A1. Although the elaborate mechanisms how claudin-1 plays its roles in CSFV infection require further investigations, this study may advance our understanding of the molecular host-pathogen interaction mechanisms underlying CSFV infection and suggests enhancement of porcine claudin-1 as a potential preventive or therapeutic strategy for CSF control.


Subject(s)
Classical Swine Fever Virus , Classical Swine Fever , Animals , Cell Line , Claudin-1/genetics , Swine , Virus Replication
19.
Acta Pharm Sin B ; 11(5): 1286-1299, 2021 May.
Article in English | MEDLINE | ID: mdl-34094834

ABSTRACT

The bromodomain and extraterminal (BET) family member BRD4 is pivotal in the pathogenesis of cardiac hypertrophy. BRD4 induces hypertrophic gene expression by binding to the acetylated chromatin, facilitating the phosphorylation of RNA polymerases II (Pol II) and leading to transcription elongation. The present study identified a novel post-translational modification of BRD4: poly(ADP-ribosyl)ation (PARylation), that was mediated by poly(ADP-ribose)polymerase-1 (PARP1) in cardiac hypertrophy. BRD4 silencing or BET inhibitors JQ1 and MS417 prevented cardiac hypertrophic responses induced by isoproterenol (ISO), whereas overexpression of BRD4 promoted cardiac hypertrophy, confirming the critical role of BRD4 in pathological cardiac hypertrophy. PARP1 was activated in ISO-induced cardiac hypertrophy and facilitated the development of cardiac hypertrophy. BRD4 was involved in the prohypertrophic effect of PARP1, as implied by the observations that BRD4 inhibition or silencing reversed PARP1-induced hypertrophic responses, and that BRD4 overexpression suppressed the anti-hypertrophic effect of PARP1 inhibitors. Interactions of BRD4 and PARP1 were observed by co-immunoprecipitation and immunofluorescence. PARylation of BRD4 induced by PARP1 was investigated by PARylation assays. In response to hypertrophic stimuli like ISO, PARylation level of BRD4 was elevated, along with enhanced interactions between BRD4 and PARP1. By investigating the PARylation of truncation mutants of BRD4, the C-terminal domain (CTD) was identified as the PARylation modification sites of BRD4. PARylation of BRD4 facilitated its binding to the transcription start sites (TSS) of hypertrophic genes, resulting in enhanced phosphorylation of RNA Pol II and transcription activation of hypertrophic genes. The present findings suggest that strategies targeting inhibition of PARP1-BRD4 might have therapeutic potential for pathological cardiac hypertrophy.

20.
Nucleic Acids Res ; 49(10): 5867-5880, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34048556

ABSTRACT

Mammalian oocyte maturation is driven by strictly regulated polyadenylation and translational activation of maternal mRNA stored in the cytoplasm. However, the poly(A) polymerase (PAP) that directly mediates cytoplasmic polyadenylation in mammalian oocytes has not been determined. In this study, we identified PAPα as the elusive enzyme that catalyzes cytoplasmic mRNA polyadenylation implicated in mouse oocyte maturation. PAPα was mainly localized in the germinal vesicle (GV) of fully grown oocytes but was distributed to the ooplasm after GV breakdown. Inhibition of PAPα activity impaired cytoplasmic polyadenylation and translation of maternal transcripts, thus blocking meiotic cell cycle progression. Once an oocyte resumes meiosis, activated CDK1 and ERK1/2 cooperatively mediate the phosphorylation of three serine residues of PAPα, 537, 545 and 558, thereby leading to increased activity. This mechanism is responsible for translational activation of transcripts lacking cytoplasmic polyadenylation elements in their 3'-untranslated region (3'-UTR). In turn, activated PAPα stimulated polyadenylation and translation of the mRNA encoding its own (Papola) through a positive feedback circuit. ERK1/2 promoted Papola mRNA translation in a 3'-UTR polyadenylation signal-dependent manner. Through these mechanisms, PAPα activity and levels were significantly amplified, improving the levels of global mRNA polyadenylation and translation, thus, benefiting meiotic cell cycle progression.


Subject(s)
Meiosis , Oocytes/metabolism , Oogenesis , Polynucleotide Adenylyltransferase/metabolism , RNA, Messenger, Stored/metabolism , Animals , Cell Cycle , Cytoplasm/metabolism , Cytoplasmic Vesicles/metabolism , HeLa Cells , Humans , Meiosis/genetics , Mice , Mice, Inbred ICR , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Oogenesis/genetics , Phosphorylation , Polyadenylation , Polynucleotide Adenylyltransferase/antagonists & inhibitors , Polynucleotide Adenylyltransferase/genetics , Protein Biosynthesis , RNA, Messenger, Stored/genetics , RNA, Small Interfering , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...