Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 60(9): 4924-4934, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37198386

ABSTRACT

Social isolation is an unpleasant experience associated with an increased risk of mental disorders. Exploring whether these experiences affect behaviors in aged people is particularly important, as the elderly is very likely to suffer from periods of social isolation during their late-life. In this study, we analyzed the depressive-like behaviors, plasma concentrations of homocysteine (Hcy), and brain-derived neurotropic factor (BDNF) levels in aged mice undergoing social isolation. Results showed that depressive-like behavioral performance and decreased BDNF level were correlated with increased Hcy levels that were detected in 2-month isolated mice. Elevated Hcy induced by high methionine diet mimicked the depressive-like behaviors and BDNF downregulation in the same manner as social isolation, while administration of vitamin B complex supplements to reduce Hcy alleviated the depressive-like behaviors and BDNF reduction in socially isolated mice. Altogether, our results indicated that Hcy played a critical role in social isolation-induced depressive-like behaviors and BDNF reduction, suggesting the possibility of Hcy as a potential therapeutic target and vitamin B intake as a potential value in the prevention of stress-induced depression.


Subject(s)
Brain-Derived Neurotrophic Factor , Brain , Mice , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain/metabolism , Social Behavior , Social Isolation , Dietary Supplements , Homocysteine
2.
Behav Brain Res ; 397: 112939, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32991925

ABSTRACT

With the lengthening of the human lifespan, an increasing proportion of the population is subject to age-related cognitive impairments, making it important to investigate ways to confront the effects of aging. Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune receptor that is expressed mainly on the surfaces of microglia. Previous studies have found a significant positive correlation between age and TREM2 levels. An increased concentration of soluble TREM2 in cerebrospinal fluid was also found in Alzheimer's disease (AD) patients. Although TREM2 is more highly expressed in microglia than in astrocytes, little attention has been focused on astrocytic TREM2, and the precise role of astrocytic TREM2 in the aging process remains unknown. In this study, we injected TREM2 shRNA into the hippocampal CA1 region to specifically knock down the expression of this protein in astrocytes. We found that TREM2 shRNA injection can improve learning and memory ability in elderly mice, as demonstrated by improved learning ability and memory performance in the Morris water maze (MWM) test, an increased freezing duration in the contextual fear conditioning test, a higher preference ratio in the novel object recognition (NOR) test and a higher alternation rate in the T-maze test. Knocking down astrocytic TREM2 can also rescue impaired long-term potentiation (LTP) induction in the hippocampal CA1 of elderly mice through a presynaptic mechanism. Our results suggest that decreased astrocytic TREM2 levels have beneficial effects on learning and memory ability in elderly mice, which may provide new insight into the pathological mechanism and potential targets of age-related dementia.


Subject(s)
Astrocytes/metabolism , CA1 Region, Hippocampal/metabolism , Hippocampus/physiology , Learning/physiology , Long-Term Potentiation/physiology , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism , Aging , Animals , Behavior, Animal/physiology , Cognitive Dysfunction , Conditioning, Classical/physiology , Hippocampus/metabolism , Male , Maze Learning/physiology , Mice , Mice, Transgenic , RNA, Small Interfering , Recognition, Psychology/physiology
3.
Int J Neurosci ; 126(3): 257-68, 2016.
Article in English | MEDLINE | ID: mdl-26001208

ABSTRACT

Recent studies have demonstrated that the molecules secreted from microglias play important roles in the cell fate determination of neural stem cells (NSCs), and nicotinic acetylcholine receptor agonist treatment could reduce neuroinflammation in some neurodegenerative disease models, such as Alzheimer's disease (AD). However, it is not clear how nicotine plays a neuroprotective role in inflammation-mediated central nervous diseases, and its possible mechanisms in the process remain largely elusive. The aim of this study is to improve the survival microenvironment of NSCs co-cultured with microglias in vitro by weakening inflammation that mediated by accumulation of ß-amyloid peptide (Aß). The viability, proliferation, differentiation, apoptosis of NSCs and underlying mechanisms associated with Wnt signaling pathway were investigated. The results showed that Aß could directly damage NSCs. Furthermore, concomitant to elevated levels of TNF-α, IL-1ß derived from microglias, the NSCs had been damaged more severely with the upregulation of Axin 2, p-ß-catenin and the downregulation of ß-catenin, p-GSK-3ß, microtubule-associated protein-2, choline acetyltransferase. However, addition of 10 µmol/L nicotine before microglias treated with Aß was beneficial to protect the NSCs against neurotoxicity of microglial-derived factors induced by Aß, which partially rescued proliferation, differentiation and inhibited apoptosis of NSCs via activation of Wnt/ß-catenin pathway. Taken together, these data imply that low concentration nicotine attenuates NSCs injury induced by microglial-derived factors via Wnt signaling pathway. Thus, treatment with nicotinic acetylcholine receptor agonist provides a promising research field for neural stem cell fate and therapeutic intervention in neuroinflammation diseases.


Subject(s)
Amyloid beta-Peptides/pharmacology , Microglia/drug effects , Neural Stem Cells/drug effects , Nicotine/pharmacology , Wnt Signaling Pathway/drug effects , Animals , Animals, Newborn , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Microglia/metabolism , Neural Stem Cells/metabolism , Rats , Rats, Sprague-Dawley , Wnt Proteins/metabolism , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL