Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(29): 15543-15556, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34254089

ABSTRACT

A computational framework for ligand-driven design of transition metal complexes is presented in this work. We propose a general procedure for the construction of active site-specific linear free energy relationships (LFERs), which are inspired from Hammett and Taft correlations in organic chemistry and grounded in the activation strain model (ASM). Ligand effects are isolated and quantified in terms of their contribution to interaction and strain energy components of ASM. Scalar descriptors that are easily obtainable are then employed to construct the complete LFER. We successfully demonstrate proof-of-concept by constructing and applying an LFER to CH activation with enzyme-inspired [Cu2O2]2+ complexes. The key benefit of using ASM is a built-in compensation or error cancellation between LFER prediction of interaction and strain terms, resulting in accurate barrier predictions for 37 of the 47 catalysts examined in this study. The LFER is also transferable with respect to level of theory and flexible towards the choice of reference system. The absence of interaction-strain compensation or poor model performance for the remaining systems is a consequence of the approximate nature of the chosen interaction energy descriptor and LFER construction of the strain term, which focuses largely on trends in substrate and not catalyst strain.

2.
Dalton Trans ; 49(30): 10509-10515, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32748911

ABSTRACT

Three complexes based on an Ir-M (M = FeII, CoII, and NiII) heterobimetallic core and 2-(diphenylphosphino)pyridine (Ph2PPy) ligand were synthesized via the reaction of trans-[IrCl(CO)(Ph2PPy)2] and the corresponding metal chloride. Their structures were established by single-crystal X-ray diffraction as [Ir(CO)(µ-Cl)(µ-Ph2PPy)2FeCl2]·2CH2Cl2 (2), [IrCl(CO)(µ-Ph2PPy)2CoCl2]·2CH2Cl2 (3), and [Ir(CO)(µ-Cl)(µ-Ph2PPy)2NiCl2]·2CH2Cl2 (4). Time-dependent DFT computations suggest a donor-acceptor interaction between a filled 5dz2 orbital on iridium and an empty orbital on the first-row metal atom, which is supported by UV-vis studies. Magnetic moment measurements show that the first-row metals are in their high-spin electronic configurations. Cyclic voltammetry data show that all the complexes undergo irreversible decomposition upon either reduction or oxidation. Reduction of 4 proceeds through an ECE mechanism. While these complexes are not stable to electrocatalysis conditions, the data presented here refine our understanding of the bonding synergies of the first-row and third-row metals.

3.
Phys Chem Chem Phys ; 22(14): 7155-7159, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32207503

ABSTRACT

We propose a computational framework for developing Taft-like linear free energy relationships to characterize steric effects on the catalytic activity of transition metal complexes. This framework uses the activation strain model and energy decomposition analysis to isolate electronic and geometric effects, and identifies structural descriptors to construct linear relationships. We demonstrate proof-of-principle for CH activation with enzyme-inspired [Cu2O2]2+ complexes coordinated to bidentate diamine N-donors. Electronic effects are largely similar across chosen systems and geometric effects - quantified by strain energies - are accurately captured by a linear combination of two structural descriptors. A powerful linear free energy relationship emerges that is transferable to asymmetrically substituted complexes. We outline steps for expanding this approach to create a generalizable Taft framework for inorganic catalyst design.

4.
Phys Chem Chem Phys ; 20(40): 25602-25614, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30283932

ABSTRACT

We employ density functional theory and energy decomposition analysis to probe the mechanism of CH activation in dioxo-dicopper complexes. The electrophilicity of monodentate N-donor ligands coordinated to Cu is systematically varied to examine the response of barriers to the two proposed pathways - one-step oxo-insertion and two-step radical recombination. Electron-withdrawing ligand stabilize the oxo-insertion transition state via charge transfer interactions, and therefore lead to lower barriers. On the other hand, barriers to the CH activation step in the radical recombination mechanism exhibit almost no dependence on N-donor electrophilicity. Based on the similarities between calculated and experimental Hammett relationships, the oxo-insertion pathway appears to be the preferred mechanism of CH activation in dioxo-dicopper catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL