Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Clin Invest ; 127(5): 1856-1872, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28394261

ABSTRACT

Cancer cells preferentially utilize glucose and glutamine, which provide macromolecules and antioxidants that sustain rapid cell division. Metabolic reprogramming in cancer drives an increased glycolytic rate that supports maximal production of these nutrients. The folate cycle, through transfer of a carbon unit between tetrahydrofolate and its derivatives in the cytoplasmic and mitochondrial compartments, produces other metabolites that are essential for cell growth, including nucleotides, methionine, and the antioxidant NADPH. Here, using hepatocellular carcinoma (HCC) as a cancer model, we have observed a reduction in growth rate upon withdrawal of folate. We found that an enzyme in the folate cycle, methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L), plays an essential role in support of cancer growth. We determined that MTHFD1L is transcriptionally activated by NRF2, a master regulator of redox homeostasis. Our observations further suggest that MTHFD1L contributes to the production and accumulation of NADPH to levels that are sufficient to combat oxidative stress in cancer cells. The elevation of oxidative stress through MTHFD1L knockdown or the use of methotrexate, an antifolate drug, sensitizes cancer cells to sorafenib, a targeted therapy for HCC. Taken together, our study identifies MTHFD1L in the folate cycle as an important metabolic pathway in cancer cells with the potential for therapeutic targeting.


Subject(s)
Aminohydrolases/metabolism , Carcinoma, Hepatocellular/enzymology , Folic Acid/metabolism , Formate-Tetrahydrofolate Ligase/metabolism , Liver Neoplasms/enzymology , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Multienzyme Complexes/metabolism , Neoplasm Proteins/metabolism , Aminohydrolases/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Folic Acid/genetics , Formate-Tetrahydrofolate Ligase/genetics , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Multienzyme Complexes/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Neoplasm Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL