Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 127(11): 1422-1436, 2020 11 06.
Article in English | MEDLINE | ID: mdl-32951519

ABSTRACT

RATIONALE: Decades of research have examined immune-modulatory strategies to protect the heart after an acute myocardial infarction and prevent progression to heart failure but have failed to translate to clinical benefit. OBJECTIVE: To determine anti-inflammatory actions of n-apo AI (Apo AI nanoparticles) that contribute to cardiac tissue recovery after myocardial infarction. METHODS AND RESULTS: Using a preclinical mouse model of myocardial infarction, we demonstrate that a single intravenous bolus of n-apo AI (CSL111, 80 mg/kg) delivered immediately after reperfusion reduced the systemic and cardiac inflammatory response. N-apo AI treatment lowered the number of circulating leukocytes by 30±7% and their recruitment into the ischemic heart by 25±10% (all P<5.0×10-2). This was associated with a reduction in plasma levels of the clinical biomarker of cardiac injury, cardiac troponin-I, by 52±17% (P=1.01×10-2). N-apo AI reduced the cardiac expression of chemokines that attract neutrophils and monocytes by 60% to 80% and lowered surface expression of integrin CD11b on monocytes by 20±5% (all P<5.0×10-2). Fluorescently labeled n-apo AI entered the infarct and peri-infarct regions and colocalized with cardiomyocytes undergoing apoptosis and with leukocytes. We further demonstrate that n-apo AI binds to neutrophils and monocytes, with preferential binding to the proinflammatory monocyte subtype and partially via SR-BI (scavenger receptor BI). In patients with type 2 diabetes, we also observed that intravenous infusion of the same n-apo AI (CSL111, 80 mg/kg) similarly reduced the level of circulating leukocytes by 12±5% (all P<5.0×10-2). CONCLUSIONS: A single intravenous bolus of n-apo AI delivered immediately post-myocardial infarction reduced the systemic and cardiac inflammatory response through direct actions on both the ischemic myocardium and leukocytes. These data highlight the anti-inflammatory effects of n-apo AI and provide preclinical support for investigation of its use for management of acute coronary syndromes in the setting of primary percutaneous coronary interventions.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Apolipoprotein A-I/administration & dosage , Inflammation/prevention & control , Leukocytes/drug effects , Myocardial Infarction/drug therapy , Nanoparticles , Administration, Intravenous , Adult , Animals , CD11b Antigen/metabolism , Cells, Cultured , Chemokines/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/immunology , Disease Models, Animal , Drug Administration Schedule , Humans , Inflammation/immunology , Inflammation/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Myocardial Infarction/immunology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Randomized Controlled Trials as Topic , Scavenger Receptors, Class B/genetics , Scavenger Receptors, Class B/metabolism , Troponin I/blood
SELECTION OF CITATIONS
SEARCH DETAIL