Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38869566

ABSTRACT

Luminescent carbon dots (CDs) were locally synthesized in the core of CYTOP fibers using IR femtosecond laser direct writing (FLDW), a one-step simple method serving as a post-treatment of the pristine fiber. This approach enables the creation of several types of modifications such as ellipsoid voids. The CDs and photoluminescence (PL) distribute at the periphery of the voids. The PL spectral properties were studied through the excitation/emission matrix in the visible range and excitation/emission spectra in the UV/visible range. Our findings reveal the presence of at least three distinct luminescent species, facilitating a broad excitation range extending from UV to green, and light emission spanning from blue to red. The average laser power and dose influence the quantity and ratio of these luminescent CD species. Additionally, we measured the spatially resolved lifetime of the luminescence during and after the irradiation. We found longer lifetimes at the periphery of the laser-induced modified regions and shorter ones closer to the center, with a dominant lifetime ~2 ns. Notably, unlike many other luminophores, these laser-induced CDs are insensitive to oxygen, enhancing their potential for display or data storage applications.

2.
Opt Lett ; 49(12): 3284-3287, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38875601

ABSTRACT

Optical elements embedded in an optical fiber can be used to shape and modulate the light transmitted within. We consistently observe, via Mueller polarimetry, that the optical properties of a femtosecond (fs) laser-created spherical cavity within a perfluorinated fiber exhibit predictable patterns. Specifically, linear birefringence is always induced at the periphery of the cavity, with its value showing a bell-shape distribution. The peak value of LB showed an increase correlating with the laser fluence and power, but its FWHM remains unchanged. Furthermore, it is important to highlight that when the cavity is disrupted, forming a channel to the fiber's surface, a negative LB is observed at the cavity's periphery, with a value reaching up to -0.4 rad. These optical phenomena may pique the interest of engineering and technical fields, potentially inspiring innovative approaches in optical fiber technology and its associated applications.

3.
Micromachines (Basel) ; 15(2)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38398925

ABSTRACT

This paper focuses on the critical role of temperature in ultrafast direct laser writing processes, where temperature changes can trigger or exclusively drive certain transformations, such as phase transitions. It is important to consider both the temporal dynamics and spatial temperature distribution for the effective control of material modifications. We present analytical expressions for temperature variations induced by multi-pulse absorption, applicable to pulse durations significantly shorter than nanoseconds within a spherical energy source. The objective is to provide easy-to-use expressions to facilitate engineering tasks. Specifically, the expressions are shown to depend on just two parameters: the initial temperature at the center denoted as T00 and a factor Rτ representing the ratio of the pulse period τp to the diffusion time τd. We show that temperature, oscillating between Tmax and Tmin, reaches a steady state and we calculate the least number of pulses required to reach the steady state. The paper defines the occurrence of heat accumulation precisely and elucidates that a temperature increase does not accompany systematically heat accumulation but depends on a set of laser parameters. It also highlights the temporal differences in temperature at the focus compared to areas outside the focus. Furthermore, the study suggests circumstances under which averaging the temperature over the pulse period can provide an even simpler approach. This work is instrumental in comprehending the diverse temperature effects observed in various experiments and in preparing for experimental setup. It also aids in determining whether temperature plays a role in the processes of direct laser writing. Toward the end of the paper, several application examples are provided.

4.
Nanoscale Adv ; 6(2): 489-498, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38235095

ABSTRACT

Femtosecond (fs) laser irradiation inside transparent materials has drawn considerable interest over the past two decades. More specifically, self-assembled nanogratings, induced by fs laser direct writing (FLDW) inside glass, enable a broad range of potential applications in optics, photonics, or microfluidics. In this work, a comprehensive study of nanogratings formed inside fused silica by FLDW is presented based on high-resolution electron microscopy imaging techniques. These nanoscale investigations reveal that the intrinsic structure of nanogratings is composed of oblate nanopores, shaped into nanoplanes, regularly spaced and oriented perpendicularly to the laser polarization. These nanoporous layers are forced-organized by light, resulting in a pseudo-organized spacing at the sub-wavelength scale, and observed in a wide range of optical glasses. In light of the current state of the art, we discuss the imprinting of nanoporous layers under thermomechanical effects induced by a plasma-mediated nanocavitation process.

5.
Materials (Basel) ; 17(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276441

ABSTRACT

In this study, we investigate the effects of densification through high pressure and temperature (up to 5 GPa, 1000 °C) in the making of nanogratings in pure silica glass, inscribed with femtosecond laser. The latter were monitored through retardance measurements using polarized optical microscopy, and their internal structure was observed under scanning electron microscopy. We reveal the difficulty in making nanogratings in densified silica glasses. Based on this observation, we propose that free volume may be a key precursor to initiate nanograting formation.

6.
Appl Opt ; 62(27): 7156, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37855569

ABSTRACT

This publisher's note contains corrections to Appl. Opt.62, 6794 (2023)APOPAI0003-693510.1364/AO.496351.

7.
Appl Opt ; 62(25): 6794-6801, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37706813

ABSTRACT

The thermal stability of self-assembled porous nanogratings inscribed by an infrared femtosecond (fs) laser in five commercial glasses (BK7, soda lime, 7059, AF32, and Eagle XG) is monitored using step isochronal annealing experiments. Their erasure, ascertained by retardance measurements and attributed to the collapse of nanopores, is well predicted from the Rayleigh-Plesset (R-P) equation. This finding is thus employed to theoretically predict the erasure of nanogratings in the context of any time-temperature process (e.g., thermal annealing, laser irradiation process). For example, in silica glass (Suprasil CG) and using a simplified form of the R-P equation, nanogratings composed of 50 nm will erase within ∼30m i n, ∼1µs, and ∼30n s at temperatures of ∼1250∘ C, 2675°C, and 3100°C, respectively. Such conclusions are expected to provide guidelines to imprint nanogratings in oxide glasses (for instance, in the choice of laser parameters) or to design appropriate thermal annealing protocols for temperature sensing.

8.
Sci Rep ; 13(1): 11050, 2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37422488

ABSTRACT

We report on direct femtosecond laser writing in zinc barium gallo-germanate glasses. A combination of spectroscopic techniques allows to progress in the understanding of the mechanisms taking place depending on the energy. In the first regime (type I, isotropic local index change) up to 0.5 µJ, the main occurrence is the generation of charge traps inspected by luminescence, together with separation of charges detected by polarized second harmonic generation measurements. At higher pulse energies notably at the threshold corresponding to 0.8 µJ or in the second regime (type II modifications corresponding to nanograting formation energy domain), the main occurrence is a chemical change and re-organization of the network evidenced by the appearance of molecular O2 seen in the Raman spectra. In addition, the polarization dependence of the second harmonic generation in type II indicates that the organization of nanogratings may be perturbed by the laser-imprinted electric field.


Subject(s)
Glass , Lasers , Glass/chemistry , Light , Luminescence , Writing
9.
Opt Express ; 31(10): 15449-15460, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157646

ABSTRACT

Self-assembled nanogratings, inscribed by femtosecond laser writing in volume, are demonstrated in multicomponent alkali and alkaline earth containing alumino-borosilicate glasses. The laser beam pulse duration, pulse energy, and polarization, were varied to probe the nanogratings existence as a function of laser parameters. Moreover, laser-polarization dependent form birefringence, characteristic of nanogratings, was monitored through retardance measurements using polarized light microscopy. Glass composition was found to drastically impact the formation of nanogratings. For a sodium alumino-borosilicate glass, a maximum retardance of 168 nm (at 800 fs and 1000 nJ) could be measured. The effect of composition is discussed based on SiO2 content, B2O3/Al2O3 ratio, and the Type II processing window is found to decrease as both (Na2O + CaO)/Al2O3 and B2O3/Al2O3 ratios increase. Finally, an interpretation in the ability to form nanogratings from a glass viscosity viewpoint, and its dependency with respect to the temperature, is demonstrated. This work is brought into comparison with previously published data on commercial glasses, which further indicates the strong link between nanogratings formation, glass chemistry, and viscosity.

10.
Light Sci Appl ; 12(1): 46, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36806189

ABSTRACT

An object that possesses chirality, that is, having its mirror image not overlayed on itself by rotation and translation, can provide a different optical response to a left- or right-handed circular polarized light. Chiral nanostructures may exhibit polarization-selective optical properties that can be controlled for micro-to-nano optical element engineering. An attractive way to induce such complex nanostructures in three-dimension in glass is femtosecond laser direct writing. However, the mechanism of femtosecond laser induced chirality remains to be unveiled due to complex physical and chemical processes occurring during the ultrashort light-matter interaction. Here, a phenomenological model is proposed and is built on two-layers phase shifters to account for this laser-induced optical chirality in an initially achiral material (silica glass). This model is based on the observation that femtosecond laser induced nanogratings own two principal contributions to its aggregate birefringent response: a form and a stress-related one. By refining this formalism, a multilayer approach is developed to imprint on demand optical rotation. Values up to +/-60° at 550 nm within an optimal 80 µm thickness in silica glass are possible, corresponding to the highest value in a glass to date. These results provide new insights of circular-optical control in micro-nano optical manufacturing and open new opportunities for photonics applications.

11.
Opt Lett ; 48(2): 271-274, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36638435

ABSTRACT

Chirality transfer from femtosecond laser direct writing in achiral transparent materials mainly originates from the interplay between anisotropic nanogratings and mechanical stress with non-parallel and non-perpendicular (oblique) neutral axes. Yet, the laser fabrication simultaneously induces non-negligible linear birefringence. For precise manipulation of circular polarization properties, as well as to unlock the full functionality, we report here a geometry-inspired multilayer method for direct writing of chiral waveplates with minimal linear birefringence. We perform a theoretical analysis of both circular and linear properties response for different multilayer configurations and achieve strong circular birefringence of up to -2.25 rad with an extinction ratio of circular birefringence to total linear birefringence of up to 5.5 dB at 550 nm. Our strategy enables the precise control of circular properties and provides a facile platform for chiral device exploration with almost no linear property existence.

12.
Nanomaterials (Basel) ; 12(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36080022

ABSTRACT

Nanogratings (NGs) are self-assembled subwavelength and birefringent nanostructures created by femtosecond laser direct writing (FLDW) in glass, which are of high interest for photonics, sensing, five-dimensional (5D) optical data storage, or microfluidics applications. In this work, NG formation windows were investigated in nine commercial glasses and as a function of glass viscosity and chemical composition. The NG windows were studied in an energy-frequency laser parameter landscape and characterized by polarizing optical microscopy and scanning electron microscopy (SEM). Pure silica glass (Suprasil) exhibits the largest NG window, whereas alkali borosilicate glasses (7059 and BK7) present the smallest one. Moreover, the NG formation windows progressively reduced in the following order: ULE, GeO2, B33, AF32, and Eagle XG. The NG formation window in glasses was found to decrease with the increase of alkali and alkaline earth content and was correlated to the temperature dependence of the viscosity in these glasses. This work provides guidelines to the formation of NGs in commercial oxide glasses by FLDW.

13.
Opt Lett ; 47(5): 1242-1245, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35230337

ABSTRACT

This paper is dedicated to the lifetime prediction of Type II modifications (i.e., nanogratings) written in silica glass using an infrared femtosecond laser. Herein we report accelerated aging experiments of such nanogratings through the monitoring of their characteristic linear birefringence signature. Based on the master curve formalism, we demonstrate that these laser-induced nanostructures can survive for 200 hours at 1100°C. Under the reported processing conditions and after a dedicated passivation treatment, the estimated lifetime of the birefringent optical elements is beyond 10 years at 800°C with a minor erasure of 7%.

14.
Opt Lett ; 45(19): 5444-5447, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33001915

ABSTRACT

Using induced UV attenuation across a twisted fiber asymmetric core drawn from a 3D printed preform, linear fiber Bragg gratings (FBGs) are produced on one side of the core. By removing the twist, a helical grating with a period matching the twist rate is produced. Balancing the rate with the polarization beat length in a form birefringent fiber allows the production of a combined rocking filter and FBG device with tunable properties. Direct observation of the fiber grating dispersion within the rocking filter rejection band is possible.

15.
Opt Lett ; 45(14): 4016-4019, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32667343

ABSTRACT

In this Letter, the impact of Al2O3 doping on the Bi active center (BAC) photobleaching is investigated in Bi/Er-codoped fibers (BEDFs). By measuring the evolution of emission attributed to the BAC associated with silica (BAC-Si) at ∼1400nm, the linear relationship between the ratio of unbleached/bleached part (γUB/γB) and 830 nm irradiation intensity (P830) was revealed in the log-log plot. The experimental results demonstrate that Al2O3 doping or its induced defects could be one key factor exaggerating the BAC photobleaching in BEDFs.

16.
Sci Rep ; 10(1): 6712, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32317669

ABSTRACT

Scintillator materials are widely used for a variety of applications such as high energy physics, astrophysics and medical imaging. Since the ideal scintillator does not exist, the search for scintillators with suitable properties for each application is of great interest. Here, Pr3+-doped KGd(PO3)4 bulk single crystals with monoclinic structure (space group: P21) are grown from high temperature solutions and their structural, thermal and optical properties are studied as possible candidates for scintillation material. The change in the unit cell parameters as a function of the Pr3+ level of doping and temperature is studied. Differential thermal analysis reveals that KGd0.942Pr0.058(PO3)4 is stable until 1140 K. The 5d3, 5d2 and 5d1 levels of Pr3+ with respect to the 3H4 ground state are centred at 166, 196 and 218 nm, respectively, in this host. The luminescence of KGd0.990Pr0.010(PO3)4, by exciting these 5d levels, shows intense emissions centred at 256 and 265 nm from the 5d1 to 3F3,4 and 1G4 levels of Pr3+ with a short decay time of 6 ns. The 6P3/2,5/2,7/2 → 8S7/2 transitions of Gd3+ appear after exciting the 5d levels of Pr3+ and the 4 f levels of Gd3+, showing an energy transfer between Pr3+ and Gd3+.

17.
Opt Express ; 28(4): 4694-4707, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32121702

ABSTRACT

We offer here an accurate quantitative model of the RIA (radiation-induced absorption) at low dose-rate (below 1 kGy) that experience the most common erbium-doped fibers (Ge-Al-Er-doped silica) under radiations. It addresses the degradation mechanisms of the glass fiber, especially the influence of its doping elements versus its sensitivity to radiations. Moreover, it depends mainly on macroscopic quantities coming from literature or experiments. For these two reasons, it is a reliable and efficient tool for the engineering of erbium-doped fibers (erbium-free fibers too) exposed to ionizing radiations and is validated in this paper by comparing the modelisation results to RIA experiments on 14 Er-doped optical fiber samples, in which composition changes a lot from one sample to another (in the range 0-25%wt for Ge, 0-10%wt for Al and 0-1500ppm for Er).

18.
Sensors (Basel) ; 20(3)2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32019146

ABSTRACT

Femtosecond (fs) laser written fiber Bragg gratings (FBGs) are excellent candidates for ultra-high temperature (>800 ºC) monitoring. More specifically, Type II modifications in silicate glass fibers, characterized by the formation of self-organized birefringent nanostructures, are known to exhibit remarkable thermal stability around 1000 ºC for several hours. However, to date there is no clear understanding on how both laser writing parameters and glass composition impact the overall thermal stability of these fiber-based sensors. In this context, this work investigates thermal stability of Type II modifications in various conventional glass systems (including pure silica glasses with various Cl and OH contents, GeO2-SiO2 binary glasses, TiO2- and B2O3-doped commercial glasses) and with varying laser parameters (writing speed, pulse energy). In order to monitor thermal stability, isochronal annealing experiments (Δt⁓ 30 min, ΔT⁓ 50 ºC) up to 1400 ºC were performed on the irradiated samples, along with quantitative retardance measurements. Among the findings to highlight, it was established that ppm levels of Cl and OH can drastically reduce thermal stability (by about 200 ºC in this study). Moreover, GeO2 doping up to 17 mole% only has a limited impact on thermal stability. Finally, the relationships between glass viscosity, dopants/impurities, and thermal stability, are discussed.

19.
Micromachines (Basel) ; 11(2)2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31991590

ABSTRACT

This paper compares anisotropic linear optical properties (linear birefringence, linear dichroism, degree of polarization) and performances (absorption coefficient, thermal stability) of two types of birefringent waveplates fabricated in silica glass by femtosecond laser direct writing. The first type of waveplate is based on birefringence induced by self-organized nanogratings imprinted in the glass. One the other hand, the second design is based on birefringence originating from the stress-field formed around the aforementioned nanogratings. In addition to the provided comparison, the manufacturing of stress-engineered half waveplates in the UV-Visible range, and with mm-size clear aperture and negligible excess losses, is reported. Such results contrast with waveplates made of nanogratings, as the later exhibit significantly higher scattering losses and depolarization effects in the UV-Visible range.

20.
Opt Lett ; 44(7): 1872-1875, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30933169

ABSTRACT

We have investigated the thermal quenching effect on the bismuth active center (BAC) in a Bi/Er co-doped fiber (BEDF). The effects from varying quenching conditions are studied and discussed. We report, for the first time to our knowledge, a significant BAC activation achieved by thermal quenching. We observed that the peak luminescence at ∼1405 nm of the BAC associated with silica (BAC-Si) could be enhanced more than two times by thermal quenching. The experimental results indicate that thermal quenching could be an effective way for BAC activation of bismuth-doped fibers.

SELECTION OF CITATIONS
SEARCH DETAIL
...