Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Nucleic Acids Res ; 51(D1): D384-D388, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36477806

ABSTRACT

NLM's conserved domain database (CDD) is a collection of protein domain and protein family models constructed as multiple sequence alignments. Its main purpose is to provide annotation for protein and translated nucleotide sequences with the location of domain footprints and associated functional sites, and to define protein domain architecture as a basis for assigning gene product names and putative/predicted function. CDD has been available publicly for over 20 years and has grown substantially during that time. Maintaining an archive of pre-computed annotation continues to be a challenge and has slowed down the cadence of CDD releases. CDD curation staff builds hierarchical classifications of large protein domain families, adds models for novel domain families via surveillance of the protein 'dark matter' that currently lacks annotation, and now spends considerable effort on providing names and attribution for conserved domain architectures. CDD can be accessed at https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.


Subject(s)
Databases, Protein , Proteins , Humans , Amino Acid Sequence , Conserved Sequence , Protein Structure, Tertiary , Proteins/chemistry , Proteins/genetics , Protein Domains
2.
Nucleic Acids Res ; 49(D1): D1020-D1028, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33270901

ABSTRACT

The Reference Sequence (RefSeq) project at the National Center for Biotechnology Information (NCBI) contains nearly 200 000 bacterial and archaeal genomes and 150 million proteins with up-to-date annotation. Changes in the Prokaryotic Genome Annotation Pipeline (PGAP) since 2018 have resulted in a substantial reduction in spurious annotation. The hierarchical collection of protein family models (PFMs) used by PGAP as evidence for structural and functional annotation was expanded to over 35 000 protein profile hidden Markov models (HMMs), 12 300 BlastRules and 36 000 curated CDD architectures. As a result, >122 million or 79% of RefSeq proteins are now named based on a match to a curated PFM. Gene symbols, Enzyme Commission numbers or supporting publication attributes are available on over 40% of the PFMs and are inherited by the proteins and features they name, facilitating multi-genome analyses and connections to the literature. In adherence with the principles of FAIR (findable, accessible, interoperable, reusable), the PFMs are available in the Protein Family Models Entrez database to any user. Finally, the reference and representative genome set, a taxonomically diverse subset of RefSeq prokaryotic genomes, is now recalculated regularly and available for download and homology searches with BLAST. RefSeq is found at https://www.ncbi.nlm.nih.gov/refseq/.


Subject(s)
Computational Biology/methods , Databases, Genetic , Genome, Archaeal/genetics , Genome, Bacterial/genetics , Molecular Sequence Annotation/methods , Proteins/genetics , Data Curation/methods , Data Mining/methods , Genomics/methods , Internet , Proteins/classification , User-Computer Interface
3.
Database (Oxford) ; 20202020 01 01.
Article in English | MEDLINE | ID: mdl-32500917

ABSTRACT

For optimal performance, machine learning methods for protein sequence/structural analysis typically require as input a large multiple sequence alignment (MSA), which is often created using query-based iterative programs, such as PSI-BLAST or JackHMMER. However, because these programs align database sequences using a query sequence as a template, they may fail to detect or may tend to misalign sequences distantly related to the query. More generally, automated MSA programs often fail to align sequences correctly due to the unpredictable nature of protein evolution. Addressing this problem typically requires manual curation in the light of structural data. However, curated MSAs tend to contain too few sequences to serve as input for statistically based methods. We address these shortcomings by making publicly available a set of 252 curated hierarchical MSAs (hiMSAs), containing a total of 26 212 066 sequences, along with programs for generating from these extremely large MSAs. Each hiMSA consists of a set of hierarchically arranged MSAs representing individual subgroups within a superfamily along with template MSAs specifying how to align each subgroup MSA against MSAs higher up the hierarchy. Central to this approach is the MAPGAPS search program, which uses a hiMSA as a query to align (potentially vast numbers of) matching database sequences with accuracy comparable to that of the curated hiMSA. We illustrate this process for the exonuclease-endonuclease-phosphatase superfamily and for pleckstrin homology domains. A set of extremely large MSAs generated from the hiMSAs in this way is available as input for deep learning, big data analyses. MAPGAPS, auxiliary programs CDD2MGS, AddPhylum, PurgeMSA and ConvertMSA and links to National Center for Biotechnology Information data files are available at https://www.igs.umaryland.edu/labs/neuwald/software/mapgaps/.


Subject(s)
Databases, Protein , Proteins , Sequence Alignment/methods , Machine Learning , Proteins/chemistry , Proteins/genetics , Sequence Analysis, Protein , Software
4.
Bioinformatics ; 36(1): 131-135, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31218344

ABSTRACT

MOTIVATION: Build a web-based 3D molecular structure viewer focusing on interactive structural analysis. RESULTS: iCn3D (I-see-in-3D) can simultaneously show 3D structure, 2D molecular contacts and 1D protein and nucleotide sequences through an integrated sequence/annotation browser. Pre-defined and arbitrary molecular features can be selected in any of the 1D/2D/3D windows as sets of residues and these selections are synchronized dynamically in all displays. Biological annotations such as protein domains, single nucleotide variations, etc. can be shown as tracks in the 1D sequence/annotation browser. These customized displays can be shared with colleagues or publishers via a simple URL. iCn3D can display structure-structure alignments obtained from NCBI's VAST+ service. It can also display the alignment of a sequence with a structure as identified by BLAST, and thus relate 3D structure to a large fraction of all known proteins. iCn3D can also display electron density maps or electron microscopy (EM) density maps, and export files for 3D printing. The following example URL exemplifies some of the 1D/2D/3D representations: https://www.ncbi.nlm.nih.gov/Structure/icn3d/full.html?mmdbid=1TUP&showanno=1&show2d=1&showsets=1. AVAILABILITY AND IMPLEMENTATION: iCn3D is freely available to the public. Its source code is available at https://github.com/ncbi/icn3d. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Base Sequence , Computational Biology , Internet , Models, Molecular , Proteins , Software , Computational Biology/methods , Databases, Genetic , Molecular Conformation , Proteins/chemistry
5.
Nucleic Acids Res ; 48(D1): D265-D268, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31777944

ABSTRACT

As NLM's Conserved Domain Database (CDD) enters its 20th year of operations as a publicly available resource, CDD curation staff continues to develop hierarchical classifications of widely distributed protein domain families, and to record conserved sites associated with molecular function, so that they can be mapped onto user queries in support of hypothesis-driven biomolecular research. CDD offers both an archive of pre-computed domain annotations as well as live search services for both single protein or nucleotide queries and larger sets of protein query sequences. CDD staff has continued to characterize protein families via conserved domain architectures and has built up a significant corpus of curated domain architectures in support of naming bacterial proteins in RefSeq. These architecture definitions are available via SPARCLE, the Subfamily Protein Architecture Labeling Engine. CDD can be accessed at https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.


Subject(s)
Databases, Protein , Protein Domains , Amino Acid Sequence , Conserved Sequence
6.
Nucleic Acids Res ; 45(D1): D200-D203, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27899674

ABSTRACT

NCBI's Conserved Domain Database (CDD) aims at annotating biomolecular sequences with the location of evolutionarily conserved protein domain footprints, and functional sites inferred from such footprints. An archive of pre-computed domain annotation is maintained for proteins tracked by NCBI's Entrez database, and live search services are offered as well. CDD curation staff supplements a comprehensive collection of protein domain and protein family models, which have been imported from external providers, with representations of selected domain families that are curated in-house and organized into hierarchical classifications of functionally distinct families and sub-families. CDD also supports comparative analyses of protein families via conserved domain architectures, and a recent curation effort focuses on providing functional characterizations of distinct subfamily architectures using SPARCLE: Subfamily Protein Architecture Labeling Engine. CDD can be accessed at https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.


Subject(s)
Computational Biology/methods , Databases, Protein , Protein Interaction Domains and Motifs , Proteins , Information Dissemination , Internet , Proteins/chemistry , Proteins/classification , Proteins/genetics
7.
Nucleic Acids Res ; 43(Database issue): D222-6, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25414356

ABSTRACT

NCBI's CDD, the Conserved Domain Database, enters its 15(th) year as a public resource for the annotation of proteins with the location of conserved domain footprints. Going forward, we strive to improve the coverage and consistency of domain annotation provided by CDD. We maintain a live search system as well as an archive of pre-computed domain annotation for sequences tracked in NCBI's Entrez protein database, which can be retrieved for single sequences or in bulk. We also maintain import procedures so that CDD contains domain models and domain definitions provided by several collections available in the public domain, as well as those produced by an in-house curation effort. The curation effort aims at increasing coverage and providing finer-grained classifications of common protein domains, for which a wealth of functional and structural data has become available. CDD curation generates alignment models of representative sequence fragments, which are in agreement with domain boundaries as observed in protein 3D structure, and which model the structurally conserved cores of domain families as well as annotate conserved features. CDD can be accessed at http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.


Subject(s)
Databases, Protein , Protein Structure, Tertiary , Amino Acid Motifs , Amino Acid Sequence , Conserved Sequence , Data Curation
8.
Nucleic Acids Res ; 42(Database issue): D297-303, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24319143

ABSTRACT

The computational detection of similarities between protein 3D structures has become an indispensable tool for the detection of homologous relationships, the classification of protein families and functional inference. Consequently, numerous algorithms have been developed that facilitate structure comparison, including rapid searches against a steadily growing collection of protein structures. To this end, NCBI's Molecular Modeling Database (MMDB), which is based on the Protein Data Bank (PDB), maintains a comprehensive and up-to-date archive of protein structure similarities computed with the Vector Alignment Search Tool (VAST). These similarities have been recorded on the level of single proteins and protein domains, comprising in excess of 1.5 billion pairwise alignments. Here we present VAST+, an extension to the existing VAST service, which summarizes and presents structural similarity on the level of biological assemblies or macromolecular complexes. VAST+ simplifies structure neighboring results and shows, for macromolecular complexes tracked in MMDB, lists of similar complexes ranked by the extent of similarity. VAST+ replaces the previous VAST service as the default presentation of structure neighboring data in NCBI's Entrez query and retrieval system. MMDB and VAST+ can be accessed via http://www.ncbi.nlm.nih.gov/Structure.


Subject(s)
Databases, Protein , Structural Homology, Protein , Computer Graphics , Internet , Macromolecular Substances/chemistry , Models, Molecular , Software
9.
Nucleic Acids Res ; 41(Database issue): D348-52, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23197659

ABSTRACT

CDD, the Conserved Domain Database, is part of NCBI's Entrez query and retrieval system and is also accessible via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml. CDD provides annotation of protein sequences with the location of conserved domain footprints and functional sites inferred from these footprints. Pre-computed annotation is available via Entrez, and interactive search services accept single protein or nucleotide queries, as well as batch submissions of protein query sequences, utilizing RPS-BLAST to rapidly identify putative matches. CDD incorporates several protein domain and full-length protein model collections, and maintains an active curation effort that aims at providing fine grained classifications for major and well-characterized protein domain families, as supported by available protein three-dimensional (3D) structure and the published literature. To this date, the majority of protein 3D structures are represented by models tracked by CDD, and CDD curators are characterizing novel families that emerge from protein structure determination efforts.


Subject(s)
Databases, Protein , Protein Conformation , Protein Structure, Tertiary , Amino Acid Sequence , Conserved Sequence , Internet , Models, Molecular , Molecular Sequence Annotation , Proteins/chemistry , Proteins/classification , Proteins/genetics , Sequence Analysis, Protein
10.
Nucleic Acids Res ; 40(Web Server issue): W242-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22689646

ABSTRACT

Sites that show specific conservation patterns within subsets of proteins in a protein family are likely to be involved in the development of functional specificity. These sites, generally termed specificity determining sites (SDS), might play a crucial role in binding to a specific substrate or proteins. Identification of SDS through experimental techniques is a slow, difficult and tedious job. Hence, it is very important to develop efficient computational methods that can more expediently identify SDS. Herein, we present Specificity prediction using amino acids' Properties, Entropy and Evolution Rate (SPEER)-SERVER, a web server that predicts SDS by analyzing quantitative measures of the conservation patterns of protein sites based on their physico-chemical properties and the heterogeneity of evolutionary changes between and within the protein subfamilies. This web server provides an improved representation of results, adds useful input and output options and integrates a wide range of analysis and data visualization tools when compared with the original standalone version of the SPEER algorithm. Extensive benchmarking finds that SPEER-SERVER exhibits sensitivity and precision performance that, on average, meets or exceeds that of other currently available methods. SPEER-SERVER is available at http://www.hpppi.iicb.res.in/ss/.


Subject(s)
Proteins/chemistry , Software , Algorithms , Amino Acids/chemistry , Internet , Protein Binding , Sequence Alignment , Sequence Analysis, Protein , User-Computer Interface
11.
BMC Bioinformatics ; 13: 144, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22726767

ABSTRACT

BACKGROUND: The NCBI Conserved Domain Database (CDD) consists of a collection of multiple sequence alignments of protein domains that are at various stages of being manually curated into evolutionary hierarchies based on conserved and divergent sequence and structural features. These domain models are annotated to provide insights into the relationships between sequence, structure and function via web-based BLAST searches. RESULTS: Here we automate the generation of conserved domain (CD) hierarchies using a combination of heuristic and Markov chain Monte Carlo (MCMC) sampling procedures and starting from a (typically very large) multiple sequence alignment. This procedure relies on statistical criteria to define each hierarchy based on the conserved and divergent sequence patterns associated with protein functional-specialization. At the same time this facilitates the sequence and structural annotation of residues that are functionally important. These statistical criteria also provide a means to objectively assess the quality of CD hierarchies, a non-trivial task considering that the protein subgroups are often very distantly related--a situation in which standard phylogenetic methods can be unreliable. Our aim here is to automatically generate (typically sub-optimal) hierarchies that, based on statistical criteria and visual comparisons, are comparable to manually curated hierarchies; this serves as the first step toward the ultimate goal of obtaining optimal hierarchical classifications. A plot of runtimes for the most time-intensive (non-parallelizable) part of the algorithm indicates a nearly linear time complexity so that, even for the extremely large Rossmann fold protein class, results were obtained in about a day. CONCLUSIONS: This approach automates the rapid creation of protein domain hierarchies and thus will eliminate one of the most time consuming aspects of conserved domain database curation. At the same time, it also facilitates protein domain annotation by identifying those pattern residues that most distinguish each protein domain subgroup from other related subgroups.


Subject(s)
Conserved Sequence , Databases, Protein , Protein Structure, Tertiary , Proteins , Algorithms , Amino Acid Sequence , Markov Chains , Monte Carlo Method , Phylogeny , Protein Folding , Proteins/chemistry , Proteins/classification , Sequence Alignment
12.
Database (Oxford) ; 2012: bar058, 2012.
Article in English | MEDLINE | ID: mdl-22434827

ABSTRACT

The overwhelming fraction of proteins whose sequences have been collected in comprehensive databases may never be assessed for function experimentally. Commonly, putative function is assigned based on similarity to experimentally characterized homologs, either on the level of the entire protein or for single evolutionarily conserved domains. The annotation of individual sites provides more detailed insights regarding the correspondence between sequence and function, as well as context for the interpretation of sequence variation and the outcomes of experiments. In general, site annotation has to be extracted from the published literature, and can often be transferred to closely related sequence neighbors. The National Center for Biotechnology Information's Conserved Domain Database (CDD) provides a system for curators to record functional (such as active sites or binding sites for cofactors) or characteristic sites (such as signature motifs), which are conserved across domain families, and for the transfer of that annotation to protein database sequences via high-confidence domain matches. Recently, CDD curators have begun to sort-site annotations into seven categories (active, polypeptide binding, nucleic acid binding, ion binding, chemical binding, post-translational modification and other) and here we present a first comparative analysis of sites obtained via domain model matches, juxtaposed with existing site annotation encountered in high-quality data sets. Site annotation derived from domain annotation has the potential to cover large fractions of protein sequences, and we observe that CDD-based site annotation complements existing site annotation in many cases, which may, in part, originate from CDD's curation practice of collecting sites conserved across diverse taxa and supported by evidence from multiple 3D structures.


Subject(s)
Database Management Systems , Databases, Protein , Molecular Sequence Annotation/methods , Protein Structure, Tertiary , Proteins/chemistry , Amino Acid Sequence , Conserved Sequence , Proteins/classification , Proteins/genetics , Sequence Alignment
13.
Nucleic Acids Res ; 40(Database issue): D461-4, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22135289

ABSTRACT

Close to 60% of protein sequences tracked in comprehensive databases can be mapped to a known three-dimensional (3D) structure by standard sequence similarity searches. Potentially, a great deal can be learned about proteins or protein families of interest from considering 3D structure, and to this day 3D structure data may remain an underutilized resource. Here we present enhancements in the Molecular Modeling Database (MMDB) and its data presentation, specifically pertaining to biologically relevant complexes and molecular interactions. MMDB is tightly integrated with NCBI's Entrez search and retrieval system, and mirrors the contents of the Protein Data Bank. It links protein 3D structure data with sequence data, sequence classification resources and PubChem, a repository of small-molecule chemical structures and their biological activities, facilitating access to 3D structure data not only for structural biologists, but also for molecular biologists and chemists. MMDB provides a complete set of detailed and pre-computed structural alignments obtained with the VAST algorithm, and provides visualization tools for 3D structure and structure/sequence alignment via the molecular graphics viewer Cn3D. MMDB can be accessed at http://www.ncbi.nlm.nih.gov/structure.


Subject(s)
Databases, Protein , Models, Molecular , Protein Conformation , Sequence Analysis, Protein
14.
Nucleic Acids Res ; 39(Database issue): D225-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21109532

ABSTRACT

NCBI's Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints. CDD includes manually curated domain models that make use of protein 3D structure to refine domain models and provide insights into sequence/structure/function relationships. Manually curated models are organized hierarchically if they describe domain families that are clearly related by common descent. As CDD also imports domain family models from a variety of external sources, it is a partially redundant collection. To simplify protein annotation, redundant models and models describing homologous families are clustered into superfamilies. By default, domain footprints are annotated with the corresponding superfamily designation, on top of which specific annotation may indicate high-confidence assignment of family membership. Pre-computed domain annotation is available for proteins in the Entrez/Protein dataset, and a novel interface, Batch CD-Search, allows the computation and download of annotation for large sets of protein queries. CDD can be accessed via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.


Subject(s)
Databases, Protein , Protein Structure, Tertiary , Amino Acid Sequence , Conserved Sequence , Models, Biological , Proteins/classification , Sequence Analysis, Protein
15.
Biochem Biophys Res Commun ; 384(2): 155-9, 2009 Jun 26.
Article in English | MEDLINE | ID: mdl-19394310

ABSTRACT

Identification of functionally important sites (FIS) in proteins is a critical problem and can have profound importance where protein structural information is limited. Machine learning techniques have been very useful in successful classification of many important biological problems. In this paper, we adopt the sparse kernel least squares classifiers (SKLSC) approach for classification and/or prediction of FIS using protein sequence derived features. The SKLSC algorithm was applied to 5435 FIS that have been extracted from 312 reliable alignments for a wide range of protein families. We obtained 68.28% sensitivity and 68.66% specificity for training dataset and 65.34% sensitivity and 66.88% specificity for testing dataset. Further, large scale benchmarking study using alignments of 101 protein families containing 1899 FIS showed that our method achieved an average approximately 70% sensitivity in predicting different types of FIS, such as active sites, metal, ligand or protein binding sites. Our findings also indicate that active sites and metal binding sites are comparably easier to predict compared to the ligand and protein binding sites. Despite moderate success, our results suggest the usefulness and potential of SKLSC approach in prediction of FIS using only protein sequence derived information.


Subject(s)
Binding Sites , Proteins/chemistry , Sequence Analysis, Protein/methods , Amino Acid Sequence , Catalytic Domain , Least-Squares Analysis , Proteins/classification
16.
Nucleic Acids Res ; 37(Database issue): D205-10, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18984618

ABSTRACT

NCBI's Conserved Domain Database (CDD) is a collection of multiple sequence alignments and derived database search models, which represent protein domains conserved in molecular evolution. The collection can be accessed at http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml, and is also part of NCBI's Entrez query and retrieval system, cross-linked to numerous other resources. CDD provides annotation of domain footprints and conserved functional sites on protein sequences. Precalculated domain annotation can be retrieved for protein sequences tracked in NCBI's Entrez system, and CDD's collection of models can be queried with novel protein sequences via the CD-Search service at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi. Starting with the latest version of CDD, v2.14, information from redundant and homologous domain models is summarized at a superfamily level, and domain annotation on proteins is flagged as either 'specific' (identifying molecular function with high confidence) or as 'non-specific' (identifying superfamily membership only).


Subject(s)
Databases, Protein , Protein Structure, Tertiary , Amino Acid Sequence , Conserved Sequence , Proteins/classification , Sequence Alignment , Sequence Analysis, Protein
17.
Bioinformation ; 2(7): 279-83, 2008 Feb 22.
Article in English | MEDLINE | ID: mdl-18478080

ABSTRACT

UNLABELLED: Understanding and characterizing the biochemical and evolutionary information within the wealth of protein sequence and structural data, particularly at functionally important sites, is very important. A comprehensive analysis of physico-chemical properties and evolutionary conservation patterns at the molecular and biological function level is expected to yield important clues for identifying similar sites in as-yet uncharacterized proteins. We present a library of protein functional templates (PFTs) designed to represent the compositional and evolutionary conservation patterns of functional sites at the molecular and biological function level. Subsequently we developed LIMACS (LInear MAtching of Conservation Scores), a software tool that uses the template library for the prediction of functionally important sites in a multiple sequence alignment, transferring the molecular function annotation from the most-similar functional site in the template library to a predicted site. AVAILABILITY: The PFT library, the LIMACS program and source code are available for PC, Mac and Linux operating systems from ftp://ftp.ncbi.nih.gov/pub/lanczyck/limacs.

18.
Nucleic Acids Res ; 35(Database issue): D237-40, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17135202

ABSTRACT

The conserved domain database (CDD) is part of NCBI's Entrez database system and serves as a primary resource for the annotation of conserved domain footprints on protein sequences in Entrez. Entrez's global query interface can be accessed at http://www.ncbi.nlm.nih.gov/Entrez and will search CDD and many other databases. Domain annotation for proteins in Entrez has been pre-computed and is readily available in the form of 'Conserved Domain' links. Novel protein sequences can be scanned against CDD using the CD-Search service; this service searches databases of CDD-derived profile models with protein sequence queries using BLAST heuristics, at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi. Protein query sequences submitted to NCBI's protein BLAST search service are scanned for conserved domain signatures by default. The CDD collection contains models imported from Pfam, SMART and COG, as well as domain models curated at NCBI. NCBI curated models are organized into hierarchies of domains related by common descent. Here we report on the status of the curation effort and present a novel helper application, CDTree, which enables users of the CDD resource to examine curated hierarchies. More importantly, CDD and CDTree used in concert, serve as a powerful tool in protein classification, as they allow users to analyze protein sequences in the context of domain family hierarchies.


Subject(s)
Databases, Protein , Protein Structure, Tertiary , Amino Acid Sequence , Animals , Conserved Sequence , Internet , Phylogeny , Protein Structure, Tertiary/genetics , Proteins/classification , Sequence Analysis, Protein , User-Computer Interface
19.
Protein Sci ; 16(1): 4-13, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17192586

ABSTRACT

The rapidly increasing volume of sequence and structure information available for proteins poses the daunting task of determining their functional importance. Computational methods can prove to be very useful in understanding and characterizing the biochemical and evolutionary information contained in this wealth of data, particularly at functionally important sites. Therefore, we perform a detailed survey of compositional and evolutionary constraints at the molecular and biological function level for a large set of known functionally important sites extracted from a wide range of protein families. We compare the degree of conservation across different functional categories and provide detailed statistical insight to decipher the varying evolutionary constraints at functionally important sites. The compositional and evolutionary information at functionally important sites has been compiled into a library of functional templates. We developed a module that predicts functionally important columns (FIC) of an alignment based on the detection of a significant "template match score" to a library template. Our template match score measures an alignment column's similarity to a library template and combines a term explicitly representing a column's residue composition with various evolutionary conservation scores (information content and position-specific scoring matrix-derived statistics). Our benchmarking studies show good sensitivity/specificity for the prediction of functional sites and high accuracy in attributing correct molecular function type to the predicted sites. This prediction method is based on information derived from homologous sequences and no structural information is required. Therefore, this method could be extremely useful for large-scale functional annotation.


Subject(s)
Proteins/chemistry , Proteins/physiology , Binding Sites , Conserved Sequence , Evolution, Molecular , Models, Molecular , Protein Conformation , Proteins/genetics
20.
BMC Bioinformatics ; 7: 499, 2006 Nov 14.
Article in English | MEDLINE | ID: mdl-17105653

ABSTRACT

BACKGROUND: Accurate multiple sequence alignments of proteins are very important in computational biology today. Despite the numerous efforts made in this field, all alignment strategies have certain shortcomings resulting in alignments that are not always correct. Refinement of existing alignment can prove to be an intelligent choice considering the increasing importance of high quality alignments in large scale high-throughput analysis. RESULTS: We provide an extensive comparison of the performance of the alignment refinement algorithms. The accuracy and efficiency of the refinement programs are compared using the 3D structure-based alignments in the BAliBASE benchmark database as well as manually curated high quality alignments from Conserved Domain Database (CDD). CONCLUSION: Comparison of performance for refined alignments revealed that despite the absence of dramatic improvements, our refinement method, REFINER, which uses conserved regions as constraints performs better in improving the alignments generated by different alignment algorithms. In most cases REFINER produces a higher-scoring, modestly improved alignment that does not deteriorate the well-conserved regions of the original alignment.


Subject(s)
Computational Biology/methods , Sequence Alignment , Algorithms , Databases, Protein , Markov Chains , Programming Languages , Protein Structure, Tertiary , Sensitivity and Specificity , Sequence Analysis, Protein , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...