Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37765360

ABSTRACT

Diabetes mellitus (DM) is a metabolic disorder characterized by persistent hyperglycemia. This state may lead to an increase in oxidative stress, which contributes to the development of diabetes complications, including diabetic kidney disease. Potentilla indica is a traditional medicinal herb in Asia, employed in the treatment of several diseases, including DM. In this study, we investigated the antioxidant effect of the ethyl acetate extract of Potentilla indica both in vitro and on kidneys of streptozotocin-induced diabetic male rats. Firstly, phytochemicals were identified via UPLC-MS/MS, and their in vitro antioxidant capabilities were evaluated. Subsequently, male Wistar rats were assigned into four groups: normoglycemic control, diabetic control, normoglycemic treated with the extract, and diabetic treated with the extract. At the end of the treatment, fasting blood glucose (FBG) levels, creatinine, blood urea nitrogen (BUN), and uric acid were estimated. Furthermore, the kidneys were removed and utilized for the determination of mitochondrial reactive oxygen species (ROS) production, mitochondrial respiratory chain complex activities, mitochondrial lipid peroxidation, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities. The in vitro findings showed that the major phytochemicals present in the extract were phenolic compounds, which exhibited a potent antioxidant activity. Moreover, the administration of the P. indica extract reduced creatinine and BUN levels, ROS production, and lipid peroxidation and improved mitochondrial respiratory chain complex activity and GSH-Px, SODk, and CAT activities when compared to the diabetic control group. In conclusion, our data suggest that the ethyl acetate extract of Potentilla indica possesses renoprotective effects by reducing oxidative stress on the kidneys of streptozotocin-induced diabetic male rats.

2.
Antioxidants (Basel) ; 12(6)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37371966

ABSTRACT

Secondary metabolites such as flavonoids are promising in the treatment of non-alcoholic fatty liver disease (NAFLD), which is one of the complications of diabetes due to oxidative stress and inflammation. Some plants, such as Eryngium carlinae, have been investigated regarding their medicinal properties in in vitro and in vivo assays, showing favorable results for the treatment of various diseases such as diabetes and obesity. The present study examined the antioxidant and anti-inflammatory effects of the phenolic compounds present in an ethyl acetate extract of the inflorescences of Eryngium carlinae on liver homogenates and mitochondria from streptozotocin (STZ)-induced diabetic rats. Phenolic compounds were identified and quantified by UHPLC-MS. In vitro assays were carried out to discover the antioxidant potential of the extract. Male Wistar rats were administered with a single intraperitoneal injection of STZ (45 mg/kg) and were given the ethyl acetate extract at a level of 30 mg/kg for 60 days. Phytochemical assays showed that the major constituents of the extract were flavonoids; in addition, the in vitro antioxidant activity was dose dependent with IC50 = 57.97 mg/mL and IC50 = 30.90 mg/mL in the DPPH and FRAP assays, respectively. Moreover, the oral administration of the ethyl acetate extract improved the effects of NAFLD, decreasing serum and liver triacylglycerides (TG) levels and oxidative stress markers and increasing the activity of the antioxidant enzymes. Likewise, it attenuated liver damage by decreasing the expression of NF-κB and iNOS, which lead to inflammation and liver damage. We hypothesize that solvent polarity and consequently chemical composition of the ethyl acetate extract of E. carlinae, exert the beneficial effects due to phenolic compounds. These results suggest that the phenolic compounds of the ethyl acetate extract of E. carlinae have antioxidant, anti-inflammatory, hypolipidemic, and hepatoprotective activity.

3.
J Bioenerg Biomembr ; 55(2): 123-135, 2023 04.
Article in English | MEDLINE | ID: mdl-36988777

ABSTRACT

Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia that affects practically all tissues and organs, being the brain one of most susceptible, due to overproduction of reactive oxygen species induced by diabetes. Eryngium carlinae is a plant used in traditional Mexican medicine to treat diabetes, which has already been experimentally shown have hypoglycemic, antioxidant and hypolipidemic properties. The green synthesis of nanoparticles is a technique that combines plant extracts with metallic nanoparticles, so that the nanoparticles reduce the absorption and distribution time of drugs or compounds, increasing their effectiveness. In this work, the antioxidant effects and mitochondrial function in the brain were evaluated, as well as the hypoglycemic and hypolipidemic effect in serum of both the aqueous extract of the aerial part of E. carlinae, as well as its combination with silver nanoparticles of green synthesis. Administration with both, extract and the combination significantly decreased the production of reactive oxygen species, lipid peroxidation, and restored the activity of superoxide dismutase 2, glutathione peroxidase, and electron transport chain complexes in brain, while that the extract-nanoparticle combination decreased blood glucose and triglyceride levels. The results obtained suggest that both treatments have oxidative activity and restore mitochondrial function in the brain of diabetic rats.


Subject(s)
Diabetes Mellitus, Experimental , Eryngium , Metal Nanoparticles , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Streptozocin/metabolism , Streptozocin/pharmacology , Streptozocin/therapeutic use , Eryngium/metabolism , Silver/pharmacology , Silver/metabolism , Silver/therapeutic use , Reactive Oxygen Species/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Oxidative Stress , Rats, Wistar , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Lipid Peroxidation , Brain/metabolism , Mitochondria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...