Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Environ Res ; : 119072, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729411

ABSTRACT

BACKGROUND: Per- and poly-fluorinated compounds (PFAS) and heavy metals constitute two classes of environmental exposures with known immunotoxicant effects. In this pilot study, we aimed to evaluate the impact of exposure to heavy metals and PFAS on COVID-19 severity. We hypothesized that elevated plasma-PFAS concentrations and urinary heavy metal concentrations would be associated with increased odds of ICU admission in COVID-19 hospitalized individuals. METHODS: Using the University of Southern California Clinical Translational Sciences Institute (SC-CTSI) biorepository of hospitalized COVID-19 patients, urinary concentrations of 15 heavy metals and urinary creatinine were measured in n=101 patients and plasma concentrations of 13 PFAS were measured in n=126 patients. COVID-19 severity was determined based on whether a patient was admitted to the ICU during hospitalization. Associations of metals and PFAS with ICU admission were assessed using logistic regression models, controlling for age, sex, ethnicity, smoking status, and for metals, urinary dilution. RESULTS: The average age of patients was 55±14.2 years. Among SC-CTSI participants with urinary measurement of heavy metals and blood measures of PFAS, 54.5% (n=61) and 54.8% (n=80) were admitted to the ICU, respectively. For heavy metals, we observed higher levels of Cd, Cr, and Cu in ICU patients. The strongest associations were with Cadmium (Cd). After accounting for covariates, each 1 SD increase in Cd resulted in a 2.00 (95% CI: 1.10-3.60; p=0.03) times higher odds of admission to the ICU. When including only Hispanic or Latino participants, the effect estimates between cadmium and ICU admission remained similar. Results for PFAS were less consistent, with perfluorodecanesulfonic acid (PFDS) exhibiting a positive but non-significant association with ICU admission (Odds ratio, 95% CI: 1.50, 0.97-2.20) and perfluorodecanoic acid (PFDA) exhibiting a negative association with ICU admission (0.53, 0.31-0.88). CONCLUSIONS: This study supports the hypothesis that environmental exposures may impact COVID-19 severity.

2.
Am J Clin Nutr ; 119(1): 221-231, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37890672

ABSTRACT

BACKGROUND: Copper (Cu), an essential trace mineral regulating multiple actions of inflammation and oxidative stress, has been implicated in risk for preterm birth (PTB). OBJECTIVES: This study aimed to determine the association of maternal Cu concentration during pregnancy with PTB risk and gestational duration in a large multicohort study including diverse populations. METHODS: Maternal plasma or serum samples of 10,449 singleton live births were obtained from 18 geographically diverse study cohorts. Maternal Cu concentrations were determined using inductively coupled plasma mass spectrometry. The associations of maternal Cu with PTB and gestational duration were analyzed using logistic and linear regressions for each cohort. The estimates were then combined using meta-analysis. Associations between maternal Cu and acute-phase reactants (APRs) and infection status were analyzed in 1239 samples from the Malawi cohort. RESULTS: The maternal prenatal Cu concentration in our study samples followed normal distribution with mean of 1.92 µg/mL and standard deviation of 0.43 µg/mL, and Cu concentrations increased with gestational age up to 20 wk. The random-effect meta-analysis across 18 cohorts revealed that 1 µg/mL increase in maternal Cu concentration was associated with higher risk of PTB with odds ratio of 1.30 (95% confidence interval [CI]: 1.08, 1.57) and shorter gestational duration of 1.64 d (95% CI: 0.56, 2.73). In the Malawi cohort, higher maternal Cu concentration, concentrations of multiple APRs, and infections (malaria and HIV) were correlated and associated with greater risk of PTB and shorter gestational duration. CONCLUSIONS: Our study supports robust negative association between maternal Cu and gestational duration and positive association with risk for PTB. Cu concentration was strongly correlated with APRs and infection status suggesting its potential role in inflammation, a pathway implicated in the mechanisms of PTB. Therefore, maternal Cu could be used as potential marker of integrated inflammatory pathways during pregnancy and risk for PTB.


Subject(s)
Premature Birth , Pregnancy , Female , Humans , Infant, Newborn , Copper , Gestational Age , Live Birth , Inflammation , Risk Factors
3.
Environ Res ; 246: 118068, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38157961

ABSTRACT

BACKGROUND: Relatively little is known about the immediate and prospective neurodevelopmental impacts of joint exposure to multiple metals (i.e., metal mixtures) in early childhood. OBJECTIVES: To estimate associations of early childhood (∼3 years of age) blood metal concentrations with cognitive test scores at early and mid-childhood (∼8 years of age). METHODS: We studied children from the Project Viva cohort. We measured erythrocyte concentrations of seven essential (Co, Cu, Mg, Mn, Mo, Se, and Zn) and eight non-essential metals (As, Ba, Cd, Cs, Hg, Pb, Sn, and Sr) in early childhood blood samples. Trained research assistants administered cognitive tests assessing vocabulary, visual-motor ability, memory, and general intelligence (standard deviations: ∼10 points), in early and mid-childhood. We employed multivariable linear regression to examine associations of individual metals with test scores adjusting for confounders, other concurrently measured metals, and first-trimester maternal blood metals. We also estimated joint associations and explored interaction between metals in mixture analyses. RESULTS: We analyzed 349 children (median whole blood Pb ∼1 µg/dL). In cross-sectional analyses, each doubling of Pb was associated with lower visual-motor function (mean difference: -2.43 points, 95% confidence interval (CI): -4.01, -0.86) and receptive vocabulary, i.e., words understood (-1.45 points, 95% CI: -3.26, 0.36). Associations of Pb with mid-childhood cognition were weaker and less precise by comparison. Mg was positively associated with cognition in cross-sectional but not prospective analyses, and cross-sectional associations were attenuated in a sensitivity analysis removing adjustment for concurrent metals. We did not observe joint associations nor interactions. DISCUSSION: In this cohort with low blood Pb levels, increased blood Pb was robustly associated with lower cognitive ability in cross-sectional analyses, even after adjustment for prenatal Pb exposure, and regardless of adjustment for metal co-exposures. However, associations with mid-childhood cognition were attenuated and imprecise, suggesting some buffering of Pb neurotoxicity in early life. WHAT THIS STUDY ADDS: Relatively few studies have comprehensively separated the effects of neurotoxic metals such as lead (Pb) from pre- and postnatal co-occurring metals, nor examined persistence of associations across childhood. In a cohort of middle-class children, we found higher early childhood (∼3 y) blood Pb was associated with lower scores on cognitive tests, independent of other metals and prenatal blood Pb. However, early childhood Pb was only weakly associated with cognition in mid-childhood (∼8 y). Our results suggest the effects of low-level Pb exposure may attenuate over time in some populations, implying the presence of factors that may buffer Pb neurotoxicity in early life.


Subject(s)
Lead , Mercury , Pregnancy , Female , Humans , Child, Preschool , Child , Cross-Sectional Studies , Lead/toxicity , Cognition , Neuropsychological Tests
4.
Curr Dev Nutr ; 6(3): nzac013, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35317414

ABSTRACT

Background: Pregnant women in Malawi are at risk of selenium deficiency, which can have adverse effects on pregnancy outcomes. Interventions for improving selenium status are needed. Objectives: To assess the effect of provision of small-quantity lipid-based nutrient supplements (SQ-LNSs) to Malawian women during pregnancy on their plasma selenium concentrations at 36 wk of gestation. Methods: Pregnant women (≤20 wk of gestation) were randomly assigned to receive daily either: 1) iron and folic acid (IFA); 2) multiple micronutrients (MMN; 130 µg selenium per capsule); or 3) SQ-LNS (130 µg selenium/20 g). Plasma selenium concentrations were measured by inductively coupled plasma mass spectrometry at baseline and after ≥16 wk of intervention (at 36 wk of gestation) and compared by intervention group. Results: At 36 wk of gestation, median (quartile 1, quartile 3) plasma selenium concentrations (micromoles per liter) were 0.96 (0.73, 1.23), 0.94 (0.78, 1.18), and 1.01 (0.85, 1.28) in the IFA, MMN, and SQ-LNS groups, respectively. Geometric mean (GM) plasma selenium concentration was 5.4% (95% CI: 1.8%, 9.0%) higher in the SQ-LNS group than in the MMN group and tended to be higher than in the IFA group (+4.2%; 95% CI: 1.0%, 7.8%). The prevalence of adjusted plasma selenium concentrations <1 µmol/L was 55.1%, 57.8%, and 47.3% in the IFA, MMN, and SQ-LNS groups, respectively; it was lower in the SQ-LNS group than in the MMN group, OR = 0.44 (95% CI: 0.24, 0.83), and tended to be lower than in the IFA group, OR = 0.54 (95% CI: 0.29, 1.03). There was a significant interaction between baseline plasma selenium concentration and intervention group (P = 0.003). In the lowest tertile of baseline selenium concentrations, GM plasma selenium concentration was higher, and the prevalence of low values was lower in the SQ-LNS group compared with the MMN and IFA groups at 36 wk of gestation (P ≤ 0.007). Conclusions: Provision of SQ-LNS containing selenium to pregnant women can be an effective strategy for improving their selenium status.This trial was registered at clinicaltrials.gov (identifier: NCT01239693).

5.
BMJ Glob Health ; 6(9)2021 09.
Article in English | MEDLINE | ID: mdl-34518202

ABSTRACT

BACKGROUND: Selenium (Se), an essential trace mineral, has been implicated in preterm birth (PTB). We aimed to determine the association of maternal Se concentrations during pregnancy with PTB risk and gestational duration in a large number of samples collected from diverse populations. METHODS: Gestational duration data and maternal plasma or serum samples of 9946 singleton live births were obtained from 17 geographically diverse study cohorts. Maternal Se concentrations were determined by inductively coupled plasma mass spectrometry analysis. The associations between maternal Se with PTB and gestational duration were analysed using logistic and linear regressions. The results were then combined using fixed-effect and random-effect meta-analysis. FINDINGS: In all study samples, the Se concentrations followed a normal distribution with a mean of 93.8 ng/mL (SD: 28.5 ng/mL) but varied substantially across different sites. The fixed-effect meta-analysis across the 17 cohorts showed that Se was significantly associated with PTB and gestational duration with effect size estimates of an OR=0.95 (95% CI: 0.9 to 1.00) for PTB and 0.66 days (95% CI: 0.38 to 0.94) longer gestation per 15 ng/mL increase in Se concentration. However, there was a substantial heterogeneity among study cohorts and the random-effect meta-analysis did not achieve statistical significance. The largest effect sizes were observed in UK (Liverpool) cohort, and most significant associations were observed in samples from Malawi. INTERPRETATION: While our study observed statistically significant associations between maternal Se concentration and PTB at some sites, this did not generalise across the entire cohort. Whether population-specific factors explain the heterogeneity of our findings warrants further investigation. Further evidence is needed to understand the biologic pathways, clinical efficacy and safety, before changes to antenatal nutritional recommendations for Se supplementation are considered.


Subject(s)
Premature Birth , Selenium , Female , Gestational Age , Humans , Infant, Newborn , Pregnancy , Premature Birth/epidemiology
6.
Eur J Obstet Gynecol Reprod Biol ; 265: 203-211, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34534736

ABSTRACT

OBJECTIVE: To establish if low maternal selenium (Se) was associated with sPTB in women with recurrent sPTB and identify genetic link with maternal Se levels. DESIGN: Nested case-control study. SETTING: Tertiary Maternity Hospital. POPULATION: Plasma and whole blood from pregnant women with history of early sPTB/PPROM < 34+0 and European ancestry were obtained at 20 weeks (range 15-24 weeks). 'Cases' were recurrent PTB/PPROM < 34+0 weeks and term (≥37+0) deliveries were classified as 'high-risk controls.' Women with previous term births and index birth ≥ 39 weeks were 'low-risk controls'. METHODS: Maternal plasma Se measured by ICP-MS was used as a continuous phenotype in a GWAS analysis. Se was added to a logistic regression model using PTB predictor variables. MAIN OUTCOME MEASURES: Maternal Se concentration, recurrent early sPTB/PPROM. RESULTS: 53/177 high-risk women had a recurrent sPTB/PPROM < 34+0weeks and were 2.7 times more likely to have a Se level < 83.3 ppm at 20weeks of pregnancy compared with low-risk term controls (n = 179), (RR 2.7, 95%CI 1.5-4.8; p = .001). One SNP from a non-coding region (FOXN3 intron variant, rs55793422) reached genome-wide significance level (p = 3.73E-08). Targeted analysis of Se gene variant did not show difference between preterm and term births. (χ2 test, OR = 0.95; 95%CI = 0.59-1.56; p = 0.82). When Se levels were added to a clinical prediction model, only an additional 5% of cases (n = 3) and 0.6% (n = 1) of controls were correctly identified. CONCLUSIONS: Low plasma Se is associated with sPTB risk but is not sufficiently predictive at individual patient level. We did not find a genetic association between maternal Se levels and Se-related genes.


Subject(s)
Premature Birth , Selenium , Case-Control Studies , Female , Humans , Models, Statistical , Pregnancy , Premature Birth/genetics , Prognosis
7.
J Trace Elem Med Biol ; 65: 126717, 2021 May.
Article in English | MEDLINE | ID: mdl-33647737

ABSTRACT

BACKGROUND: Seafood present important advantages for human nutrition, but it can also accumulate high levels of toxic and potentially toxic elements. Culinary treatments could influence seafood chemical element content and element bioavailability. In this study, the influence of culinary treatments on the total concentration and on the bioavailability of Cd, Cr, Cu and Pb in shark, shrimp, squid, oyster, and scallop was assessed. METHODS: Boiling, frying, and sautéing with or without seasonings (salt, lemon juice and garlic) were evaluated. Total concentration and bioavailability of Cd, Cr, Cu and Pb in seafood after all these culinary treatments were compared with those in uncooked samples. Analytes were determined by triple-quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS). An alternative to express the results avoiding underestimated or overestimated values was proposed. RESULTS: The analytes concentration in seafood without culinary treatment varied from 0.0030 µg g-1 (shrimp) to 0.338 µg g-1 (oyster) for Cd; 0.010 µg g-1 (squid) to 0.036 µg g-1 (oyster) for Cr; 0.088 µg g-1 (scallop) to 8.63 µg g-1 (oyster) for Cu, and < 0.005 µg g-1 (shrimp, squid and oyster) to 0.020 µg g-1 (shark) for Pb. Only Cd (in scallop) was influenced by culinary treatments (reduction from 37 to 53 % after boiling, frying, and sautéing). Bioavailability percentage varied from 11% (oyster) for Cd; 18% (oyster) to 41% (shark) for Cr; 6% (shark) for Cu, and 8% (oyster) for Pb. Bioavailability percentage was not influenced by culinary treatments. CONCLUSION: Cadmium concentration was reduced in scallop after some culinary treatments (reduction o 37-53% after boiling, frying, and sautéing), but bioavailability percentage was not influenced. The employed analytical method was adequate for the purpose, presenting import results for food safety assessment about the influence of culinary treatments on metals concentration and bioavailability in seafood.


Subject(s)
Cadmium/analysis , Chromium/analysis , Cooking , Copper/analysis , Lead/analysis , Seafood/analysis , Biological Availability , Cadmium/pharmacokinetics , Chromium/pharmacokinetics , Copper/pharmacokinetics , Food Contamination/analysis , Humans , Lead/pharmacokinetics
8.
Biometals ; 31(2): 243-254, 2018 04.
Article in English | MEDLINE | ID: mdl-29508101

ABSTRACT

Mercury (Hg) is a major environmental pollutant that can be disposed to the environment by human activities, reaching crops like vineyards during irrigation with contaminated waters. A 2-year study was performed to monitor Hg variations during reproductive and vegetative stages of vines after Hg supplementation. Variations were focused on total Hg concentration, the molecular weight of Hg fractions and Hg-proteins associations in roots, stems and leaves. Total Hg concentrations increased during reproductive stages and decreased during vegetative stages. Variations in length of these stages were observed, according to an extension of the vegetative period. Six months post Hg administration, in roots, stems and leaves, initial Hg proteic fractions of 200 kDa were catabolized to 66 kDa fractions according to a transition from reproductive to vegetative stages. However, 24 months after Hg supplementation, the 66 kDa Hg proteic fraction was continuously determined in a prolonged senescence. Accordingly, the identified proteins associated to Hg show catabolic functions such as endopeptidases, hydrolases, glucosidases and nucleosidases. Stress associated proteins, like peroxidase and chitinase were also found associated to Hg. During the reproductive periods of vines, Hg was associated to membrane proteins, such as ATPases and lipid transfer proteins, especially in roots where Hg is absorbed.


Subject(s)
Environmental Pollutants/toxicity , Mercury/toxicity , Plant Leaves/metabolism , Vitis/metabolism , Humans , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Vitis/drug effects , Vitis/growth & development
9.
Food Chem ; 255: 340-347, 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-29571485

ABSTRACT

A method for arsenic speciation in shark, shrimp, squid, oyster and scallop using liquid chromatography coupled to inductively coupled plasma triple quadrupole mass spectrometry (LC-ICP-MS/MS) was proposed. Suitable sensitivity and selectivity by LC-ICP-MS/MS were obtained using 10 mmol L-1 (NH4)2HPO4 diluted in 1% methanol (pH 8.65) as mobile phase. Recoveries from 90 to 104% for arsenobetaine (AsB), arsenite [As(III)], dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and arsenate [As(V)] were obtained for all samples. A certificated reference material was also analyzed and the sum of As species was in agreement with the total As concentration. Limits of quantification (LOQ) for AsB, As(III), DMA, MMA, and As(V) were 6, 30, 6, 12 and 26 ng g-1, respectively. Higher concentration of AsB was found in all seafood, while As(III) and DMA were found only in oyster. Arsenate was found in squid and scallops, and MMA was below the LOQ in all samples.


Subject(s)
Arsenic/analysis , Seafood/analysis , Arsenates/analysis , Arsenicals/analysis , Arsenites/analysis , Cacodylic Acid/analysis , Chromatography, Liquid , Feasibility Studies , Sensitivity and Specificity , Tandem Mass Spectrometry
10.
Food Chem ; 218: 313-320, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27719915

ABSTRACT

Selenium-enriched dietary supplements containing various selenium compounds are readily available to consumers. To ensure proper selenium intake and consumer confidence, these dietary supplements must be safe and have accurate label claims. Varying properties among selenium species requires information beyond total selenium concentration to fully evaluate health risk/benefits A LC-ICP-MS method was developed and multiple extraction methods were implemented for targeted analysis of common "seleno-amino acids" and related oxidation products, selenate, selenite, and other species relatable to the quality and/or accuracy of the labeled selenium ingredients. Ultimately, a heated water extraction was applied to recover selenium species from non-selenized yeast supplements in capsule, tablet, and liquid forms. For selenized yeast supplements, inorganic selenium was monitored as a means of assessing selenium yeast quality. A variety of commercially available selenium supplements were evaluated and discrepancies between labeled ingredients and detected species were noted.


Subject(s)
Dietary Supplements/analysis , Selenium/analysis , Dietary Supplements/standards , Dose-Response Relationship, Drug , Selenic Acid/analysis , Selenium Compounds/analysis , Selenocysteine/analogs & derivatives , Selenocysteine/analysis , Selenomethionine/analysis
11.
J Biomech Eng ; 136(2): 021018, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24317155

ABSTRACT

Primary intraocular lymphoma (PIOL) is an uncommon but clinically and pathologically distinct form of non-Hodgkin's lymphoma. It provides a therapeutic challenge because of its diverse clinical presentations and variable clinical course. Currently available treatments for PIOL include intravenous multiple drug chemotherapy, external beam radiation therapy, and intravitreal methotrexate (MTX) injection. Each intravitreal injection of MTX is associated with potentially toxic peaks and subtherapeutic troughs of intraocular MTX concentration. Repetitive injections are required to maintain therapeutic levels of MTX in the eye. A sustained release drug delivery system is desired for optimized therapeutic release (0.2-2.0 µg/day) of MTX for over a period of 1 month to achieve effective treatment of PIOL. This study reports development of a unique intravitreal micro-implant, which administers therapeutic release of MTX over a period of 1 month. Chitosan (CS) and polylactic acid (PLA) based micro-implants are fabricated for different MTX loadings (10%, 25%, and 40% w/w). First, CS and MTX mixtures are prepared for different drug loadings, and lyophilized in Tygon® tubing to obtain CS-MTX fibers. The fibers are then cut into desired micro-implant lengths and dip coated in PLA for a hydrophobic surface coating. The micro-implant is characterized using optical microscopy, scanning electron microscopy (SEM), time of flight-secondary ion mass spectroscopy (ToF-SIMS), and differential scanning calorimetry (DSC) techniques. The release rate studies are carried out using a UV-visible spectrophotometer. The total release durations for 10%, 25%, and 40% w/w uncoated CS-MTX micro-implants are only 19, 29, and 32 h, respectively. However, the therapeutic release durations for 10%, 25%, and 40% w/w PLA coated CS-MTX micro-implants significantly improved to 58, 74, and 66 days, respectively. Thus, the PLA coated CS-MTX micro-implants are able to administer therapeutic release of MTX for more than 50 days. The release kinetics of MTX from the coated micro-implants is explained by (a) the Korsmeyer-Peppas and zero order model fit (R2 ∼ 0.9) of the first 60% of the drug release, which indicates the swelling of polymer and initial burst release of the drug; and (b) the first order and Higuchi model fit (R2 ∼ 0.9) from the tenth day to the end of drug release, implying MTX release in the therapeutic window depends on its concentration and follows diffusion kinetics. The PLA coated CS-MTX micro-implants are able to administer therapeutic release of MTX for a period of more than 1 month. The proposed methodology could be used for improved treatment of PIOL.


Subject(s)
Chitosan/chemistry , Drug Implants/administration & dosage , Drug Implants/chemical synthesis , Intraocular Lymphoma/drug therapy , Lactic Acid/chemistry , Methotrexate/administration & dosage , Polymers/chemistry , Absorption, Physicochemical , Animals , Capsules/chemical synthesis , Diffusion , Humans , In Vitro Techniques , Intravitreal Injections , Materials Testing , Methotrexate/chemistry , Polyesters , Treatment Outcome
12.
Environ Res ; 126: 105-10, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24034783

ABSTRACT

BACKGROUND: There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed attention deficit hyperactivity disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. OBJECTIVES: To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. METHODS: We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA. The participants were matched on age group (5-8, 9-12 years), sex, race (African American or Caucasians and others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using inductively coupled plasma mass spectrometry. RESULTS: Inside the LIA, the 27 cases had blood Pb geometric mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07-5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. CONCLUSIONS: Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd.


Subject(s)
Attention Deficit Disorder with Hyperactivity/chemically induced , Heavy Metal Poisoning , Metals, Heavy/adverse effects , Poisoning/complications , Case-Control Studies , Child , Child, Preschool , Female , Humans , Logistic Models , Male
13.
J Synchrotron Radiat ; 19(Pt 6): 1043-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23093768

ABSTRACT

Recently, using synchrotron radiation X-ray fluorescence microscopy (SRXRF), the copper accumulation in rat aortic elastin and copper topography in human THP-1 cell monolayer have been described. However, it is necessary to locate more accurately cellular copper in the vascular cells and tissues. In the current study, SRXRF coupling with transmission electron microscopy (TEM) was used to image copper in sections of human THP-1 cells and mouse aorta. The results showed that sections of 1 µm thickness are required for SRXRF producing a correlative image with TEM between copper topography and cellular ultrastructure. As compared with SRXRF alone, coupling TEM with SRXRF can clearly identify the location of copper in the nucleus and nucleolus in non-dividing THP-1 cell sections, and can differentiate the copper location at elastic laminae from collagen in mouse aortic sections. Thus, these results revealed new information about the copper topography in vascular cells and tissues and highlighted the potential of TEM-SRXRF to investigate the role of copper in macrophage and aortic homeostasis.


Subject(s)
Copper/analysis , Microscopy, Electron, Transmission/methods , Microscopy, Fluorescence/methods , Synchrotrons , Animals , Aorta/chemistry , Cell Line , Humans , Mass Spectrometry , Mice
14.
J Sep Sci ; 35(17): 2153-61, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22807420

ABSTRACT

Stroke is the most common cause of morbidity and death in the Western world, following ischemic heart disease and cancer. Stroke can be of two types, ischemic or hemorrhagic, with ischemic stroke accounting for approximately 85% of the total number of strokes. Well-recognized environmental risk factors for stroke include hypertension, smoking, diabetes mellitus, atrial fibrillation, and atherosclerosis. Computed tomography (CT) scanning is used to diagnose hemorrhagic stroke but is relatively ineffective and may remain normal in patients with mild ischemic strokes. Magnetic Resonance Imaging (MRI) is more sensitive in detecting ischemia than CT, especially in the diagnosis of mild stroke but it is still not 100% sensitive or precise. A simple and low-cost, rapid blood test to confirm a clinical and imaging diagnosis of ischemic stroke would be extremely useful. Based on this, the central idea of this paper is to develop a method that would be applicable to a statistically viable sample set to provide candidate biomarkers for distinguishing stroke types. In search of these candidate biomarkers, different analytical separation techniques have been used to screen for major differences in the proteomes of patients plasma samples with proteomics for identification.


Subject(s)
Biomarkers/blood , Blood Proteins/analysis , Chromatography, High Pressure Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Stroke/blood , Biomarkers/analysis , Blood Proteins/isolation & purification , Female , Humans , Male , Pilot Projects , Stroke/diagnosis
15.
Toxicol Sci ; 121(2): 303-11, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21447609

ABSTRACT

The mechanisms by which exposure to arsenic induces its myriad pathological effects are undoubtedly complex, while individual susceptibility to their type and severity is likely to be strongly influenced by genetic factors. Human metabolism of arsenic into methylated derivatives, once presumed to result in detoxification, may actually produce species with significantly greater pathological potential. We introduce a transgenic Drosophila model of arsenic methylation, allowing its consequences to be studied in a higher eukaryote exhibiting conservation of many genes and pathways with those of human cells while providing an important opportunity to uncover mechanistic details via the sophisticated genetic analysis for which the system is particularly well suited. The gene for the human enzyme, arsenic (+3 oxidation state) methyltransferase, was introduced into nonmethylating Drosophila under inducible control. Transgenic flies were characterized for enzyme inducibility, production of methylated arsenic species, and the dose-dependent consequences for chromosomal integrity and organismal longevity. Upon enzyme induction, transgenic flies processed arsenite into mono and dimethylated derivatives identical to those found in human urine. When induced flies were exposed to 9 ppm arsenite, chromosomal stability was clearly reduced, whereas at much higher doses, adult life span was significantly increased, a seemingly paradoxical pair of outcomes. Measurement of arsenic body burden in the presence or absence of methylation suggested that enhanced clearance of methylated species might explain this greater longevity under acutely toxic conditions. Our study clearly demonstrates both the hazards and the benefits of arsenic methylation in vivo and suggests a resolution based on evolutionary grounds.


Subject(s)
Arsenic/toxicity , Arsenites/metabolism , Drosophila/genetics , Methylation , Methyltransferases/genetics , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Body Burden , Chromosomes/genetics , DNA Damage , Dose-Response Relationship, Drug , Endpoint Determination , Female , Humans , Male , Methyltransferases/metabolism , Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...