Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Cancer Res ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657118

ABSTRACT

Alveolar soft part sarcoma (ASPS) is a rare mesenchymal malignancy driven by the ASPSCR1::TFE3 fusion. A better understanding of the mechanisms by which this oncogenic transcriptional regulator drives cancer growth is needed to help identify potential therapeutic targets. Here, we characterized the transcriptional and chromatin landscapes of ASPS tumors and preclinical models, identifying the essential role of ASPSCR1::TFE3 in tumor cell viability by regulating core transcriptional programs involved in cell proliferation, angiogenesis, and mitochondrial biology. ASPSCR1::TFE3 directly interacted with key epigenetic regulators at enhancers and promoters to support ASPS-associated transcription. Among the effector programs driven by ASPSCR1::TFE3, cell proliferation was driven by high levels of cyclin D1 expression. Disruption of cyclin D1/CDK4 signaling led to loss of ASPS proliferative capacity, and combined inhibition of CDK4/6 and angiogenesis halted tumor growth in xenografts. These results define the ASPS oncogenic program, reveal mechanisms by which ASPSCR1::TFE3 controls tumor biology, and identify a strategy for therapeutically targeting tumor cell-intrinsic vulnerabilities.

2.
Clin Transl Med ; 13(12): e1513, 2023 12.
Article in English | MEDLINE | ID: mdl-38131168

ABSTRACT

BACKGROUND: The majority of pancreatic ductal adenocarcinoma (PDAC) patients experience disease progression while on treatment with gemcitabine and nanoparticle albumin-bound (nab)-paclitaxel (GemPac) necessitating the need for a more effective treatment strategy for this refractory disease. Previously, we have demonstrated that nuclear exporter protein exportin 1 (XPO1) is a valid therapeutic target in PDAC, and the selective inhibitor of nuclear export selinexor (Sel) synergistically enhances the efficacy of GemPac in pancreatic cancer cells, spheroids and patient-derived tumours, and had promising activity in a phase I study. METHODS: Here, we investigated the impact of selinexor-gemcitabine-nab-paclitaxel (Sel-GemPac) combination on LSL-KrasG12D/+ ; LSL-Trp53R172H/+ ; Pdx1-Cre (KPC) mouse model utilising digital spatial profiling (DSP) and single nuclear RNA sequencing (snRNAseq). RESULTS: Sel-GemPac synergistically inhibited the growth of the KPC tumour-derived cell line. The Sel-GemPac combination reduced the 2D colony formation and 3D spheroid formation. In the KPC mouse model, at a sub-maximum tolerated dose (sub-MTD) , Sel-GemPac enhanced the survival of treated mice compared to controls (p < .05). Immunohistochemical analysis of residual KPC tumours showed re-organisation of tumour stromal architecture, suppression of proliferation and nuclear retention of tumour suppressors, such as Forkhead Box O3a (FOXO3a). DSP revealed the downregulation of tumour promoting genes such as chitinase-like protein 3 (CHIL3/CHI3L3/YM1) and multiple pathways including phosphatidylinositol 3'-kinase-Akt (PI3K-AKT) signalling. The snRNAseq demonstrated a significant loss of cellular clusters in the Sel-GemPac-treated mice tumours including the CD44+ stem cell population. CONCLUSION: Taken together, these results demonstrate that the Sel-GemPac treatment caused broad perturbation of PDAC-supporting signalling networks in the KPC mouse model. HIGHLIGHTS: The majority of pancreatic ductal adenocarcinoma (PDAC) patients experience disease progression while on treatment with gemcitabine and nanoparticle albumin-bound (nab)-paclitaxel (GemPac). Exporter protein exportin 1 (XPO1) inhibitor selinexor (Sel) with GemPac synergistically inhibited the growth of LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre (KPC) mouse derived cell line and enhanced the survival of mice. Digital spatial profiling shows that Sel-GemPac causes broad perturbation of PDAC-supporting signalling in the KPC model.


Subject(s)
Carcinoma, Pancreatic Ductal , Drug Combinations , Exportin 1 Protein , Pancreatic Neoplasms , Animals , Mice , Disease Models, Animal , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Exportin 1 Protein/antagonists & inhibitors , Gemcitabine/administration & dosage , Paclitaxel/administration & dosage , Hydrazines/administration & dosage , Triazoles/administration & dosage , Tumor Microenvironment , Single-Cell Gene Expression Analysis , Humans
3.
Sci Rep ; 13(1): 16950, 2023 10 07.
Article in English | MEDLINE | ID: mdl-37805613

ABSTRACT

Despite recent relevant therapeutic progresses, chronic lymphocytic leukemia (CLL) remains an incurable disease. Selinexor, an oral inhibitor of the nuclear export protein XPO1, is active as single agent in different hematologic malignancies, including CLL. The purpose of this study was to evaluate the anti-tumor effects of selinexor, used in combination with chemotherapy drugs (i.e. fludarabine and bendamustine) or with the PI3Kδ inhibitor idelalisib in CLL. Our results showed a significant decrease in CLL cell viability after treatment with selinexor-containing drug combinations compared to each single compound, with demonstration of synergistic cytotoxic effects. Interestingly, this drug synergism was exerted also in the presence of the protective effect of stromal cells. From the molecular standpoint, the synergistic cytotoxic activity of selinexor plus idelalisib was associated with increased regulatory effects of this drug combination on the tumor suppressors FOXO3A and IkBα compared to each single compound. Finally, selinexor was also effective in potentiating the in vivo anti-tumor effects of the PI3Kδ inhibitor in mice treated with the drug combination compared to single agents. Our data provide preclinical evidence of the synergism and potential efficacy of a combination treatment targeting XPO1 and PI3Kδ in CLL.


Subject(s)
Antineoplastic Agents , Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Mice , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Hydrazines/pharmacology , Hydrazines/therapeutic use , Drug Combinations , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
4.
Exp Hematol Oncol ; 12(1): 78, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37715291

ABSTRACT

Leiomyosarcoma (LMS) is a rare soft tissue sarcoma (STS) that begins in smooth muscle tissue and most often initiates in the abdomen or uterus. Compared with other uterine cancers, uterine LMS (ULMS) is an aggressive tumor with poor prognosis and a high risk of recurrence and death, regardless of the stage at presentation. Selinexor is a first-in-class selective inhibitor of nuclear export (SINE) compound that reversibly binds to exportin 1 (XPO1), thereby reactivating tumor suppressor proteins and downregulating the expression of oncogenes and DNA damage repair (DDR) proteins. In this study, we evaluated the effects of selinexor in combination with doxorubicin and eribulin in the LMS tumor model in vitro and in vivo. Treatment of selinexor combined with eribulin showed synergistic effects on tumor growth inhibition in SK-UT1 LMS-derived xenografts. Immunohistochemical assessment of the tumor tissues showed a significantly reduced expression of proliferation (Ki67) and XPO1 markers following combination therapy compared to the control group. Global transcriptome analyses on tumor tissue revealed that the combination therapy regulates genes from several key cancer-related pathways that are differentially expressed in ULMS tumors. To our knowledge, this is the first preclinical study demonstrating the anti-cancer therapeutic potential of using a combination of selinexor and eribulin in vivo. Results from this study further warrant clinical testing a combination of chemotherapy agents with selinexor to reduce the morbidity and mortality from ULMS.

5.
Leukemia ; 37(10): 2036-2049, 2023 10.
Article in English | MEDLINE | ID: mdl-37528310

ABSTRACT

The first-in-class inhibitor of exportin-1 (XPO1) selinexor is currently under clinical investigation in combination with the BTK inhibitor ibrutinib for patients with chronic lymphocytic leukaemia (CLL) or non-Hodgkin lymphoma. Selinexor induces apoptosis of tumour cells through nuclear retention of tumour suppressor proteins and has also recently been described to modulate natural killer (NK) cell and T cell cytotoxicity against lymphoma cells. Here, we demonstrate that XPO1 inhibition enhances NK cell effector function against primary CLL cells via downregulation of HLA-E and upregulation of TRAIL death receptors DR4 and DR5. Furthermore, selinexor potentiates NK cell activation against CLL cells in combination with several approved treatments; acalabrutinib, rituximab and obinutuzumab. We further demonstrate that lymph node associated signals (IL-4 + CD40L) inhibit NK cell activation against CLL cells via upregulation of HLA-E, and that inhibition of XPO1 can overcome this protective effect. These findings allow for the design of more efficacious combination strategies to harness NK cell effector functions against CLL.


Subject(s)
Histocompatibility Antigens Class I , Hydrazines , Karyopherins , Leukemia, Lymphocytic, Chronic, B-Cell , Receptors, Cytoplasmic and Nuclear , Humans , Karyopherins/antagonists & inhibitors , Karyopherins/metabolism , Killer Cells, Natural/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Hydrazines/pharmacology , Histocompatibility Antigens Class I/metabolism , Exportin 1 Protein , HLA-E Antigens
6.
Endocrinology ; 164(6)2023 04 17.
Article in English | MEDLINE | ID: mdl-37170651

ABSTRACT

Approximately 70% of human breast cancers express estrogen receptor-α (ERα), providing a potential target for endocrine therapy. However, 30% to 40% of patients with ER+ breast cancer still experience recurrence and metastasis, with a 5-year relative overall survival rate of 24%. In this study, we identified nicotinamide phosphoribosyltransferase (NAMPT), an important enzyme in nicotinamide adenine dinucleotide (NAD+) metabolism, to be increased in metastatic breast cancer (MBC) cells treated with fulvestrant (Fulv). We tested whether the blockade of NAD+ production via inhibition of NAMPT synergizes with standard-of-care therapies for ER+ MBC in vitro and in vivo. A synergistic effect was not observed when KPT-9274 was combined with palbociclib or tamoxifen or when Fulv was combined with other metabolic inhibitors. We show that NAMPT inhibitor KPT-9274 and Fulv works synergistically to reduce metastatic tumor burden. RNA-sequencing analysis showed that NAMPT inhibitor in combination with Fulv reversed the expression of gene sets associated with more aggressive tumor phenotype, and metabolomics analysis showed that NAMPT inhibition reduced the abundance of metabolites associated with several key tumor metabolic pathways. Targeting metabolic adaptations in endocrine-resistant MBC is a novel strategy, and alternative approaches aimed at improving the therapeutic response of metastatic ER+ tumors are needed. Our findings uncover the role of ERα-NAMPT crosstalk in MBC and the utility of NAMPT inhibition and antiestrogen combination therapy in reducing tumor burden and metastasis, potentially leading to new avenues of MBC treatment.


Subject(s)
Breast Neoplasms , Estrogen Receptor alpha , Humans , Female , Estrogen Receptor alpha/genetics , NAD/metabolism , Breast Neoplasms/genetics , Acrylamides , Cytokines/metabolism , Cell Line, Tumor
7.
Biomed Pharmacother ; 160: 114305, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36731340

ABSTRACT

Selinexor (KPT-330), a small-molecule inhibitor of exportin-1 (XPO1, CRM1) with potent anticancer activity, has recently been granted FDA approval for treatment of relapsed/refractory multiple myeloma and diffuse large B-cell lymphoma (DLBCL), with a number of additional indications currently under clinical investigation. Since selinexor has often demonstrated synergy when used in combination with other drugs, notably bortezomib and dexamethasone, a more comprehensive approach to uncover new beneficial interactions would be of great value. Moreover, stratifying patients, personalizing therapeutics and improving clinical outcomes requires a better understanding of the genetic vulnerabilities and resistance mechanisms underlying drug response. Here, we used CRISPR-Cas9 loss-of-function chemogenetic screening to identify drug-gene interactions with selinexor in chronic myeloid leukemia, multiple myeloma and DLBCL cell lines. We identified the TGFß-SMAD4 pathway as an important mediator of resistance to selinexor in multiple myeloma cells. Moreover, higher activity of this pathway correlated with prolonged progression-free survival in multiple myeloma patients treated with selinexor, indicating that the TGFß-SMAD4 pathway is a potential biomarker predictive of therapeutic outcome. In addition, we identified ASB8 (ankyrin repeat and SOCS box containing 8) as a shared modulator of selinexor sensitivity across all tested cancer types, with both ASB8 knockout and overexpression resulting in selinexor hypersensitivity. Mechanistically, we showed that ASB8 promotes selinexor-induced proteasomal degradation of XPO1. This study provides insight into the genetic factors that influence response to selinexor treatment and could support both the development of predictive biomarkers as well as new drug combinations.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Active Transport, Cell Nucleus , Karyopherins/genetics , Karyopherins/metabolism , Hydrazines/pharmacology , Hydrazines/therapeutic use , Lymphoma, Large B-Cell, Diffuse/drug therapy , Suppressor of Cytokine Signaling Proteins
8.
Br J Haematol ; 201(3): 489-501, 2023 05.
Article in English | MEDLINE | ID: mdl-36746437

ABSTRACT

TET2 inactivating mutations serve as initiating genetic lesions in the transformation of haematopoietic stem and progenitor cells (HSPCs). In this study, we analysed known drugs in zebrafish embryos for their ability to selectively kill tet2-mutant HSPCs in vivo. We found that the exportin 1 (XPO1) inhibitors, selinexor and eltanexor, selectively kill tet2-mutant HSPCs. In serial replating colony assays, these small molecules were selectively active in killing murine Tet2-deficient Lineage-, Sca1+, Kit+ (LSK) cells, and also TET2-inactivated human acute myeloid leukaemia (AML) cells. Selective killing of TET2-mutant HSPCs and human AML cells by these inhibitors was due to increased levels of apoptosis, without evidence of DNA damage based on increased γH2AX expression. The finding that TET2 loss renders HSPCs and AML cells selectively susceptible to cell death induced by XPO1 inhibitors provides preclinical evidence of the selective activity of these drugs, justifying further clinical studies of these small molecules for the treatment of TET2-mutant haematopoietic malignancies, and to suppress clonal expansion in age-related TET2-mutant clonal haematopoiesis.


Subject(s)
Dioxygenases , Leukemia, Myeloid, Acute , Animals , Humans , Mice , Zebrafish , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , DNA-Binding Proteins/genetics , Dioxygenases/metabolism , Exportin 1 Protein
9.
Blood Adv ; 7(12): 2926-2937, 2023 06 27.
Article in English | MEDLINE | ID: mdl-36827679

ABSTRACT

Selinexor (KPT-330) is a small molecule inhibitor of XPO1, which mediates the transport of tumor suppressor proteins, oncogene messenger RNAs, and other proteins involved in governing cell growthfrom the cell nucleus to the cytoplasm. It is overexpressed in many cancer types. Because eukaryotic translation initiator factor 4E (eIF4E) plays a critical role in protein translation in cancer cells in multiple myeloma (MM), we evaluated the effectiveness of combined inhibition of protein translation and nuclear export in MM. Selinexor, an inhibitor of nuclear protein export, dose-dependently decreased eIF4E, IKZF1, and c-MYC protein levels. Using a doxycycline-inducible-pLKO-Tet-On vector, knockdown of eIF4E significantly enhanced the antiproliferative effects of selinexor, sensitized resistant MM cells to selinexor, and increased apoptosis in MM cells. Immunofluorescent analysis of MM cells showed that the combined treatment increased the localization of residual eIF4E to the nucleus compared with selinexor-only treatment. The overexpression of eIF4E at least partially rescued the effects of selinexor in MM cells by reducing G1 cell cycle arrest and increasing the selinexor-IC50 10-fold. Moreover, the combination of selinexor with pharmacologic inhibitors of protein translation showed synergistic anti-MM effects. These results suggest a synergistic anti-MM effect of selinexor combined with eIF4E inhibitors in vitro. Our work provides a better understanding of the potential mechanism of resistance to selinexor and a rationale for combining selinexor with eIF4E inhibitors for the treatment of MM.


Subject(s)
Karyopherins , Multiple Myeloma , Humans , Active Transport, Cell Nucleus , Karyopherins/metabolism , Karyopherins/pharmacology , Karyopherins/therapeutic use , Eukaryotic Initiation Factor-4E/metabolism , Apoptosis , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Protein Biosynthesis
10.
Front Oncol ; 12: 808021, 2022.
Article in English | MEDLINE | ID: mdl-36059685

ABSTRACT

Chordoma is a rare cancer that grows in the base of the skull and along the mobile spine from remnants of embryonic notochord tissue. The cornerstone of current treatments is surgical excision with adjuvant radiation therapy, although complete surgical removal is not always possible. Chordomas have high rates of metastasis and recurrence, with no approved targeted agents. Selinexor and eltanexor are selective inhibitors of nuclear export (SINE) that prevent the karyopherin protein exportin-1 (XPO1) from shuttling its cargo proteins through nuclear pore complexes out of the nucleus and into the cytoplasm. As cancer cells overexpress XPO1, and many of its cargos include tumor suppressor proteins and complexes bound to oncogene mRNAs, XPO1 inhibition can suppress oncogene translation and restore tumor suppressor protein activity in different cancer types. SINE compounds have exhibited anti-cancer activity in a wide range of hematological and solid tumor malignancies. Here we demonstrate the preclinical effectiveness of SINE compounds used as single agents or in combination with either the proteasome inhibitor, bortezomib, or the CDK4/6 inhibitor, abemaciclib, against various patient- derived xenograft (PDX) mouse models of chordoma, which included clival and sacral chordomas from adult or pediatric patients with either primary or metastatic disease, with either differentiated or poorly differentiated subtypes. SINE treatment significantly impaired tumor growth in all five tested chordoma models, with the selinexor and abemaciclib combination showing the strongest activity (tumor growth inhibition of 78-92%). Immunohistochemistry analysis of excised tumors revealed that selinexor treatment resulted in marked induction of apoptosis and reduced cell proliferation, as well as nuclear accumulation of SMAD4, and reduction of Brachyury and YAP1. RNA sequencing showed selinexor treatment resulted in differences in activated and repressed signaling pathways between the PDX models, including changes in WNT signaling, E2F pathways and glucocorticoid receptor signaling. This is consistent with SINE-compound mediated XPO1 inhibition exhibiting anti-cancer activity through a broad range of different mechanisms in different molecular chordoma subsets. Our findings validate the need for further investigation into selinexor as a targeted therapeutic for chordoma, especially in combination with abemaciclib.

11.
Blood Adv ; 6(22): 5938-5949, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36037515

ABSTRACT

NPM1 is the most frequently mutated gene in adults with acute myeloid leukemia (AML). The interaction between mutant NPM1 (NPM1c) and exportin-1 (XPO1) causes aberrant cytoplasmic dislocation of NPM1c and promotes the high expression of homeobox (HOX) genes, which is critical for maintaining the leukemic state of NPM1-mutated cells. Although there is a rationale for using XPO1 inhibitors in NPM1-mutated AML, selinexor administered once or twice per week did not translate into clinical benefit in patients with NPM1 mutations. Here, we show that this dosing strategy results in only a temporary disruption of the XPO1-NPM1c interaction, limiting the efficacy of selinexor. Because the second-generation XPO1 inhibitor eltanexor can be administered more frequently, we tested the antileukemic activity of prolonged XPO1 inhibition in NPM1-mutated AML models. Eltanexor caused irreversible HOX downregulation, induced terminal AML differentiation, and prolonged the survival of leukemic mice. This study provides essential information for the appropriate design of clinical trials with XPO1 inhibitors in NPM1-mutated AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Mice , Animals , Gene Expression Regulation, Leukemic , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleophosmin , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Karyopherins/genetics , Karyopherins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
13.
JCO Precis Oncol ; 6: e2200147, 2022 06.
Article in English | MEDLINE | ID: mdl-35704796

ABSTRACT

PURPOSE: Selinexor is the first selective inhibitor of nuclear export to be approved for the treatment of relapsed or refractory multiple myeloma (MM). Currently, there are no known genomic biomarkers or assays to help select MM patients at higher likelihood of response to selinexor. Here, we aimed to characterize the transcriptomic correlates of response to selinexor-based therapy. METHODS: We performed RNA sequencing on CD138+ cells from the bone marrow of 100 patients with MM who participated in the BOSTON study, followed by differential gene expression and pathway analysis. Using the differentially expressed genes, we used cox proportional hazard models to identify a gene signature predictive of response to selinexor, followed by validation in external cohorts. RESULTS: The three-gene signature predicts response to selinexor-based therapy in patients with MM in the BOSTON cohort. Then, we validated this gene signature in 64 patients from the STORM cohort of triple-class refractory MM and additionally in an external cohort of 35 patients treated in a real-world setting outside of clinical trials. We found that the signature tracks with both depth and duration of response, and it also validates in a different tumor type using a cohort of pretreatment tumors from patients with recurrent glioblastoma. Furthermore, the genes involved in the signature, WNT10A, DUSP1, and ETV7, reveal a potential mechanism through upregulated interferon-mediated apoptotic signaling that may prime tumors to respond to selinexor-based therapy. CONCLUSION: In this study, we present a present a novel, three-gene expression signature that predicts selinexor response in MM. This signature has important clinical relevance as it could identify patients with cancer who are most likely to benefit from treatment with selinexor-based therapy.


Subject(s)
Multiple Myeloma , Antineoplastic Combined Chemotherapy Protocols , Humans , Hydrazines/pharmacology , Multiple Myeloma/drug therapy , Neoplasm Recurrence, Local/chemically induced , Triazoles
14.
Cancer Res Commun ; 2(5): 342-352, 2022 05.
Article in English | MEDLINE | ID: mdl-35573474

ABSTRACT

The identification of molecules that can bind covalently to KRAS G12C and lock it in an inactive GDP-bound conformation has opened the door to targeting KRAS G12C selectively. These agents have shown promise in preclinical tumor models and clinical trials. FDA has recently granted approval to sotorasib for KRAS G12C mutated non-small cell lung cancer (NSCLC). However, patients receiving these agents as monotherapy generally develop drug resistance over time. This necessitates the development of multi-targeted approaches that can potentially sensitize tumors to KRAS inhibitors. We generated KRAS G12C inhibitor-resistant cell lines and observed that they exhibit sensitivity toward selinexor, a selective inhibitor of nuclear export protein exportin1 (XPO1), as a single agent. KRAS G12C inhibitors in combination with selinexor suppressed the proliferation of KRAS G12C mutant cancer cell lines in a synergistic manner. Moreover, combined treatment of selinexor with KRAS G12C inhibitors resulted in enhanced spheroid disintegration, reduction in the number and size of colonies formed by G12C mutant cancer cells. Mechanistically, the combination of selinexor with KRAS G12C inhibitors suppressed cell growth signaling and downregulated the expression of cell cycle markers, KRAS and NF-kB as well as increased nuclear accumulation of tumor suppressor protein Rb. In an in vivo KRAS G12C cell-derived xenograft model, oral administration of a combination of selinexor and sotorasib was demonstrated to reduce tumor burden and enhance survival. In conclusion, we have shown that the nuclear transport protein XPO1 inhibitor can enhance the anticancer activity of KRAS G12C inhibitors in preclinical cancer models. Significance: In this study, combining nuclear transport inhibitor selinexor with KRAS G12C inhibitors has resulted in potent antitumor effects in preclinical cancer models. This can be an effective combination therapy for cancer patients that do not respond or develop resistance to KRAS G12C inhibitor treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Active Transport, Cell Nucleus , Karyopherins , Lung Neoplasms/drug therapy , Nuclear Proteins/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Animals
15.
Ther Adv Med Oncol ; 14: 17588359221087555, 2022.
Article in English | MEDLINE | ID: mdl-35432603

ABSTRACT

Purpose: This phase 1 study aims to evaluate the tolerability and the recommended phase 2 dose of selinexor in Asian patients with advanced or metastatic malignancies. Experimental Design: A total of 105 patients with advanced malignancies were enrolled from two sites in Singapore (National University Hospital and the National Cancer Centre, Singapore) from 24 February 2014 to 14 January 2019. We investigated four dosing schedules of selinexor in a 3 + 3 dose escalation design with an additional Phase 1b expansion cohort. Adverse events were graded with the NCI Common Terminology Criteria for Adverse Events v 4.03. Pharmacodynamic assessments included nuclear cytoplasmic localization of p27, XPO1 cargo proteins pre and post selinexor dosing and pharmacokinetic assessments were conducted at doses between 40 and 60 mg/m2. Results: In our Asian patient cohort, dosing at 40 mg/m2 given 2 out of 3 weeks, was the most tolerable for our patients. At this dose level, grade 3 adverse events included fatigue (8%), hyponatremia (23%), vomiting (5%), thrombocytopenia (5%), and anaemia (2%). Selinexor had a rapid oral absorption with median Tmax of 2 h and no PK accumulation after multiple doses of tested regimens. Complete responses were seen in two lymphoma patients. Partial responses were noted in three diffuse large B cell lymphomas, one Hodgkin's lymphoma and thymic carcinoma patient, respectively. Conclusion: Selinexor is tolerated by Asian patients at 40 mg/m2 twice a week given 2 out of 3 weeks. A 1-week drug holiday was needed as our patients could not tolerate the current approved continuous dosing regimens because of persistent grade 3 fatigue, anorexia and hyponatremia.

16.
Am J Case Rep ; 23: e935353, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35444159

ABSTRACT

BACKGROUND Approximately 10% to 15% of patients with multiple myeloma (MM) are diagnosed with high-risk disease and have poor prognosis. Clinical trial data supports the combined use of selinexor, bortezomib, and dexamethasone (XVd) for treatment of patients with MM who have received at least 1 prior therapy. Information on the efficacy of XVd and of subsequent allogeneic stem cell transplantation (SCT) in heavily pretreated patients with high-risk MM is limited. CASE REPORT We present a case of a 58-year-old woman with high-risk MM (revised International Staging System Stage III; serum ß2-microglobulin; 8.0 mg/L; and presence of del[17p]) who had received 8 prior treatment lines, and whose disease was refractory to ixazomib, bortezomib, and all immunomodulatory agents. Before initiating XVd (once weekly 1.3 mg/m² bortezomib subcutaneously, 80 mg selinexor per os, and 40 mg dexamethasone per os), the patient had severely hypoplastic bone marrow and was transfusion dependent. After 1 cycle of XVd, she achieved a partial response, and after 4 cycles, a very good partial response (VGPR). No adverse reactions to selinexor were observed. Because of the VGPR, a haploidentical transplant was planned. At posttransplant week 4, the patient had become transfusion independent. She remained relapse-free for 13 months after initiating XVd. Maintenance treatment with lenalidomide was initiated, and following receipt of donor lymphocyte infusions due to loss of donor chimerism, the patient's light chain levels improved. CONCLUSIONS This report presents the cytogenetics and management of a heavily pretreated patient with high-risk MM treated with SVd followed by SCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bortezomib/therapeutic use , Dexamethasone , Female , Humans , Hydrazines , Middle Aged , Multiple Myeloma/diagnosis , Multiple Myeloma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Triazoles
17.
Arthritis Rheumatol ; 74(8): 1363-1375, 2022 08.
Article in English | MEDLINE | ID: mdl-35333447

ABSTRACT

OBJECTIVE: To investigate the hypothesis that selective inhibitors of nuclear export (SINE compounds), recently approved for treatment of refractory plasma cell (PC) malignancy, may have potential in the treatment of lupus. METHODS: Female NZB/NZW mice were treated with the SINE compound KPT-350 or vehicle control. Tissue specimens were harvested and analyzed by flow cytometry, using standard markers. Nephritis was monitored by determining the proteinuria score and by histologic analysis of kidney specimens. Serum anti-double-stranded DNA (anti-dsDNA) levels were measured by enzyme-linked immunosorbent assay, and total numbers of IgG-secreting and dsDNA-specific antibody-secreting cells were assessed by enzyme-linked immunospot assay. RESULTS: KPT-350 abrogated murine lupus nephritis at both early and late stages of the disease and rapidly impaired generation of autoreactive PCs in germinal centers (GCs). SINE compounds inhibited the production of NF-κB-driven homeostatic chemokines by stromal cells, altering splenic B and T cell strategic positioning and significantly reducing follicular helper T cell, GC B cell, and autoreactive PC counts. KPT-350 also decreased levels of cytokines and chemokines involved in PC survival and recruitment in the kidney of lupus-prone mice. Exportin 1, the target of SINE compounds, was detected in GCs of human tonsils, splenic B cells of lupus patients, and multiple B cell subsets in the kidneys of patients with lupus nephritis. CONCLUSION: Collectively, our results provide support for the therapeutic potential of SINE compounds, via their targeting of several molecular and cellular pathways critical in lupus pathogenesis, including autoantibody production by plasma cells.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Active Transport, Cell Nucleus , Animals , Autoantibodies , Disease Models, Animal , Enzyme-Linked Immunospot Assay , Female , Humans , Lupus Erythematosus, Systemic/drug therapy , Mice , Mice, Inbred NZB , Plasma Cells
18.
Clin Cancer Res ; 28(3): 452-460, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34728525

ABSTRACT

PURPOSE: Selinexor is an oral selective inhibitor of exportin-1 (XPO1) with efficacy in various solid and hematologic tumors. We assessed intratumoral penetration, safety, and efficacy of selinexor monotherapy for recurrent glioblastoma. PATIENTS AND METHODS: Seventy-six adults with Karnofsky Performance Status ≥ 60 were enrolled. Patients undergoing cytoreductive surgery received up to three selinexor doses (twice weekly) preoperatively (Arm A; n = 8 patients). Patients not undergoing surgery received 50 mg/m2 (Arm B, n = 24), or 60 mg (Arm C, n = 14) twice weekly, or 80 mg once weekly (Arm D; n = 30). Primary endpoint was 6-month progression-free survival rate (PFS6). RESULTS: Median selinexor concentrations in resected tumors from patients receiving presurgical selinexor was 105.4 nmol/L (range 39.7-291 nmol/L). In Arms B, C, and D, respectively, the PFS6 was 10% [95% confidence interval (CI), 2.79-35.9], 7.7% (95% CI, 1.17-50.6), and 17% (95% CI, 7.78-38.3). Measurable reduction in tumor size was observed in 19 (28%) and RANO-response rate overall was 8.8% [Arm B, 8.3% (95% CI, 1.0-27.0); C: 7.7% (95% CI, 0.2-36.0); D: 10% (95% CI, 2.1-26.5)], with one complete and two durable partial responses in Arm D. Serious adverse events (AEs) occurred in 26 (34%) patients; 1 (1.3%) was fatal. The most common treatment-related AEs were fatigue (61%), nausea (59%), decreased appetite (43%), and thrombocytopenia (43%), and were manageable by supportive care and dose modification. Molecular studies identified a signature predictive of response (AUC = 0.88). CONCLUSIONS: At 80 mg weekly, single-agent selinexor induced responses and clinically relevant PFS6 with manageable side effects requiring dose reductions. Ongoing trials are evaluating safety and efficacy of selinexor in combination with other therapies for newly diagnosed or recurrent glioblastoma.


Subject(s)
Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Hydrazines/administration & dosage , Neoplasm Recurrence, Local/drug therapy , Triazoles/administration & dosage , Administration, Oral , Adult , Aged , Brain/metabolism , Brain Neoplasms/surgery , Cytoreduction Surgical Procedures , Female , Glioblastoma/surgery , Humans , Hydrazines/adverse effects , Hydrazines/metabolism , Male , Middle Aged , Treatment Outcome , Triazoles/adverse effects , Triazoles/metabolism , Young Adult
20.
Front Oncol ; 11: 785635, 2021.
Article in English | MEDLINE | ID: mdl-34926302

ABSTRACT

Selinexor is an FDA approved selective inhibitor of the nuclear export protein exportin-1 (XPO1) and causes specific cancer cell death via nuclear accumulation of tumor suppressor proteins. Design of rational studies for the use of selinexor in combination with other therapeutic agents, such as immunotherapies, requires a fundamental understanding of the effects of selinexor on the immune system. One important emerging area of immunotherapy are natural killer (NK) cell based therapeutics. NK cell function is tightly regulated by a balance of signals derived from multiple activating and inhibitory receptors. Thus in cancer, up-regulation of stress ligands recognised by activating receptors or down-regulation of HLA class I recognised by inhibitory receptors can result in an anti-cancer NK cell response. Changes in XPO1 function therefore have the potential to affect NK cell function through shifting this balance. We therefore sought to investigate how selinexor may affect NK cell function. Selinexor pre-treatment of lymphoma cells significantly increased NK cell mediated cytotoxicity against SU-DHL-4, JeKo-1 and Ramos cells, concurrent with increased CD107a and IFNγ expression on NK cells. In addition, selinexor enhanced ADCC against lymphoma cells coated with the anti-CD20 antibodies rituximab and obinutuzumab. In probing the likely mechanism, we identified that XPO1 inhibition significantly reduced the surface expression of HLA-E on lymphoma cell lines and on primary chronic lymphocytic leukemia cells. HLA-E binds the inhibitory receptor NKG2A and in accordance with this, selinexor selectively increased activation of NKG2A+ NK cells. Our data reveals that selinexor, in addition to its direct cytotoxic activity, also activates an anti-cancer immune response via disruption of the inhibitory NKG2A:HLA-E axis.

SELECTION OF CITATIONS
SEARCH DETAIL
...