Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13320, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858427

ABSTRACT

Climate change is intensifying extreme weather events, including marine heatwaves, which are prolonged periods of anomalously high sea surface temperature that pose a novel threat to aquatic animals. Tropical animals may be especially vulnerable to marine heatwaves because they are adapted to a narrow temperature range. If these animals cannot acclimate to marine heatwaves, the extreme heat could impair their behavior and fitness. Here, we investigated how marine heatwave conditions affected the performance and thermal tolerance of a tropical predatory fish, arceye hawkfish (Paracirrhites arcatus), across two seasons in Moorea, French Polynesia. We found that the fish's daily activities, including recovery from burst swimming and digestion, were more energetically costly in fish exposed to marine heatwave conditions across both seasons, while their aerobic capacity remained the same. Given their constrained energy budget, these rising costs associated with warming may impact how hawkfish prioritize activities. Additionally, hawkfish that were exposed to hotter temperatures exhibited cardiac plasticity by increasing their maximum heart rate but were still operating within a few degrees of their thermal limits. With more frequent and intense heatwaves, hawkfish, and other tropical fishes must rapidly acclimate, or they may suffer physiological consequences that alter their role in the ecosystem.


Subject(s)
Coral Reefs , Animals , Climate Change , Fishes/physiology , Perciformes/physiology , Acclimatization/physiology , Polynesia , Seasons , Hot Temperature , Heart Rate/physiology , Extreme Heat/adverse effects
2.
Ecology ; 104(8): e4119, 2023 08.
Article in English | MEDLINE | ID: mdl-37303281

ABSTRACT

Consumers mediate nutrient cycling through excretion and egestion across most ecosystems. In nutrient-poor tropical waters such as coral reefs, nutrient cycling is critical for maintaining productivity. While the cycling of fish-derived inorganic nutrients via excretion has been extensively investigated, the role of egestion for nutrient cycling has remained poorly explored. We sampled the fecal contents of 570 individual fishes across 40 species, representing six dominant trophic guilds of coral reef fishes in Moorea, French Polynesia. We measured fecal macro- (proteins, carbohydrates, lipids) and micro- (calcium, copper, iron, magnesium, manganese, zinc) nutrients and compared the fecal nutrient quantity and quality across trophic guilds, taxa, and body size. Macro- and micronutrient concentrations in fish feces varied markedly across species. Genera and trophic guild best predicted fecal nutrient concentrations. In addition, nutrient composition in feces was unique among species within both trophic guilds (herbivores and corallivores) and genera (Acanthurus and Chaetodon). Particularly, certain coral reef fishes (e.g., Thalassoma hardwicke, Chromis xanthura, Chaetodon pelewensis and Acanthurus pyroferus) harbored relatively high concentrations of micronutrients (e.g., Mn, Mg, Zn and Fe, respectively) that are known to contribute to ocean productivity and positively impact coral physiological performances. Given the nutrient-rich profiles across reef fish feces, conserving holistic reef fish communities ensures the availability of nutritional pools on coral reefs. We therefore suggest that better integration of consumer egestion dynamics into food web models and ecosystem-scale processes will facilitate an improved understanding of coral reef functioning.


Subject(s)
Anthozoa , Perciformes , Animals , Coral Reefs , Ecosystem , Fishes/physiology , Nutrients , Feces
3.
Front Microbiol ; 12: 620458, 2021.
Article in English | MEDLINE | ID: mdl-33841351

ABSTRACT

Dysbiosis of coral microbiomes results from various biotic and environmental stressors, including interactions with important reef fishes which may act as vectors of opportunistic microbes via deposition of fecal material. Additionally, elevated sea surface temperatures have direct effects on coral microbiomes by promoting growth and virulence of opportunists and putative pathogens, thereby altering host immunity and health. However, interactions between these biotic and abiotic factors have yet to be evaluated. Here, we used a factorial experiment to investigate the combined effects of fecal pellet deposition by the widely distributed surgeonfish Ctenochaetus striatus and elevated sea surface temperatures on microbiomes associated with the reef-building coral Porites lobata. Our results showed that regardless of temperature, exposure of P. lobata to C. striatus feces increased alpha diversity, dispersion, and lead to a shift in microbial community composition - all indicative of microbial dysbiosis. Although elevated temperature did not result in significant changes in alpha and beta diversity, we noted an increasing number of differentially abundant taxa in corals exposed to both feces and thermal stress within the first 48h of the experiment. These included opportunistic microbial lineages and taxa closely related to potential coral pathogens (i.e., Vibrio vulnificus, Photobacterium rosenbergii). Some of these taxa were absent in controls but present in surgeonfish feces under both temperature regimes, suggesting mechanisms of microbial transmission and/or enrichment from fish feces to corals. Importantly, the impact to coral microbiomes by fish feces under higher temperatures appeared to inhibit wound healing in corals, as percentages of tissue recovery at the site of feces deposition were lower at 30°C compared to 26°C. Lower percentages of tissue recovery were associated with greater relative abundance of several bacterial lineages, with some of them found in surgeonfish feces (i.e., Rhodobacteraceae, Bdellovibrionaceae, Crocinitomicaceae). Our findings suggest that fish feces interact with elevated sea surface temperatures to favor microbial opportunism and enhance dysbiosis susceptibility in P. lobata. As the frequency and duration of thermal stress related events increase, the ability of coral microbiomes to recover from biotic stressors such as deposition of fish feces may be greatly affected, ultimately compromising coral health and resilience.

4.
Anim Microbiome ; 2(1): 5, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-33500004

ABSTRACT

BACKGROUND: Coral-associated microbial communities are sensitive to multiple environmental and biotic stressors that can lead to dysbiosis and mortality. Although the processes contributing to these microbial shifts remain inadequately understood, a number of potential mechanisms have been identified. For example, predation by various corallivore species, including ecologically-important taxa such as parrotfishes, may disrupt coral microbiomes via bite-induced transmission and/or enrichment of potentially opportunistic bacteria. Here, we used a combination of mesocosm experiments and field-based observations to investigate whether parrotfish corallivory can alter coral microbial assemblages directly and to identify the potentially relevant pathways (e.g. direct transmission) that may contribute to these changes. RESULTS: Our mesocosm experiment demonstrated that predation by the parrotfish Chlorurus spilurus on Porites lobata corals resulted in a 2-4x increase in bacterial alpha diversity of the coral microbiome and a shift in bacterial community composition after 48 h. These changes corresponded with greater abundance of both potentially beneficial (i.e. Oceanospirillum) and opportunistic bacteria (i.e. Flammeovirgaceae, Rhodobacteraceae) in predated compared to mechanically wounded corals. Importantly, many of these taxa were detectable in C. spilurus mouths, but not in corals prior to predation. When we sampled bitten and unbitten corals in the field, corals bitten by parrotfishes exhibited 3x greater microbial richness and a shift in community composition towards greater abundance of both potential beneficial symbionts (i.e. Ruegeria) and bacterial opportunists (i.e. Rhodospiralles, Glaciecola). Moreover, we observed 4x greater community variability in naturally bitten vs. unbitten corals, a potential indicator of dysbiosis. Interestingly, some of the microbial taxa detected in naturally bitten corals, but not unbitten colonies, were also detected in parrotfish mouths. CONCLUSIONS: Our findings suggest that parrotfish corallivory may represent an unrecognized route of bacterial transmission and/or enrichment of rare and distinct bacterial taxa, both of which could impact coral microbiomes and health. More broadly, we highlight how underappreciated pathways, such as corallivory, may contribute to dysbiosis within reef corals, which will be critical for understanding and predicting coral disease dynamics as reefs further degrade.

SELECTION OF CITATIONS
SEARCH DETAIL
...