Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Signal Transduct Target Ther ; 9(1): 103, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38664368

ABSTRACT

Obesity is one of the diseases with severe health consequences and rapidly increasing worldwide prevalence. Understanding the complex network of food intake and energy balance regulation is an essential prerequisite for pharmacological intervention with obesity. G protein-coupled receptors (GPCRs) are among the main modulators of metabolism and energy balance. They, for instance, regulate appetite and satiety in certain hypothalamic neurons, as well as glucose and lipid metabolism and hormone secretion from adipocytes. Mutations in some GPCRs, such as the melanocortin receptor type 4 (MC4R), have been associated with early-onset obesity. Here, we identified the adhesion GPCR latrophilin 1 (ADGRL1/LPHN1) as a member of the regulating network governing food intake and the maintenance of energy balance. Deficiency of the highly conserved receptor in mice results in increased food consumption and severe obesity, accompanied by dysregulation of glucose homeostasis. Consistently, we identified a partially inactivating mutation in human ADGRL1/LPHN1 in a patient suffering from obesity. Therefore, we propose that LPHN1 dysfunction is a risk factor for obesity development.


Subject(s)
Obesity , Receptors, G-Protein-Coupled , Receptors, Peptide , Animals , Humans , Mice , Energy Metabolism/genetics , Glucose/metabolism , Glucose/genetics , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/genetics , Receptors, Peptide/metabolism
2.
Adipocyte ; 13(1): 2290218, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38064408

ABSTRACT

S-adenosyl-homocysteine-hydrolase (AHCY) plays an important role in the methionine cycle regulating cellular methylation levels. AHCY has been reported to influence proliferation and differentiation processes in different cell types, e.g. in cancer cells and mouse embryonic stem cells. In the development of adipose tissue, both the proliferation and differentiation of adipocyte progenitor cells (APCs) are important processes, which in the context of obesity are often dysregulated. To assess whether AHCY might also be involved in cell proliferation and differentiation of APCs, we investigated the effect of reduced AHCY activity on human and mouse APCs in vitro. We show that the inhibition of AHCY using adenosine dialdehyde (AdOx) and the knockdown of AHCY using gene-specific siRNAs reduced APC proliferation and number. Inhibition of AHCY further reduced APC differentiation into mature adipocytes and the expression of adipogenic differentiation markers. Global DNA methylation profiling in human APCs revealed that inhibition of AHCY is associated with alterations in CpG methylation levels of genes involved in fat cell differentiation and pathways related to cellular growth. Our findings suggest that AHCY is necessary for the maintenance of APC proliferation and differentiation and inhibition of AHCY alters DNA methylation processes leading to a dysregulation of the expression of genes involved in the regulation of these processes.


Subject(s)
Adenosylhomocysteinase , Adipocytes , Adipose Tissue , Animals , Humans , Mice , Adipocytes/metabolism , Adipogenesis/genetics , Cell Differentiation/genetics , Cell Proliferation , Stem Cells , Adenosylhomocysteinase/genetics , Adenosylhomocysteinase/metabolism
3.
Diabetes Care ; 46(11): 2067-2075, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37756535

ABSTRACT

OBJECTIVE: Dietary glycemic index (GI) and glycemic load (GL) are associated with cardiometabolic health in children and adolescents, with potential distinct effects in people with increased BMI. DNA methylation (DNAm) may mediate these effects. Thus, we conducted meta-analyses of epigenome-wide association studies (EWAS) between dietary GI and GL and blood DNAm of children and adolescents. RESEARCH DESIGN AND METHODS: We calculated dietary GI and GL and performed EWAS in children and adolescents (age range: 4.5-17 years) from six cohorts (N = 1,187). We performed stratified analyses of participants with normal weight (n = 801) or overweight or obesity (n = 386). We performed look-ups for the identified cytosine-phosphate-guanine (CpG) sites (false discovery rate [FDR] <0.05) with tissue-specific gene expression of 832 blood and 223 subcutaneous adipose tissue samples from children and adolescents. RESULTS: Dietary GL was positively associated with DNAm of cg20274553 (FDR <0.05), annotated to WDR27. Several CpGs were identified in the normal-weight (GI: 85; GL: 17) and overweight or obese (GI: 136; GL: 298; FDR <0.05) strata, and none overlapped between strata. In participants with overweight or obesity, identified CpGs were related to RNA expression of genes associated with impaired metabolism (e.g., FRAT1, CSF3). CONCLUSIONS: We identified 537 associations between dietary GI and GL and blood DNAm, mainly in children and adolescents with overweight or obesity. High-GI and/or -GL diets may influence epigenetic gene regulation and thereby promote metabolic derangements in young people with increased BMI.


Subject(s)
Glycemic Index , Glycemic Load , Humans , Child , Adolescent , Child, Preschool , Glycemic Index/physiology , Overweight , DNA Methylation/genetics , Epigenome , Diet , Obesity , Proto-Oncogene Proteins , Adaptor Proteins, Signal Transducing
4.
iScience ; 26(10): 107841, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37766984

ABSTRACT

G protein-coupled receptors (GPCRs) modulate the function of adipose tissue (AT) in general and of adipocytes, specifically. Although it is well-established that GPCRs are widely expressed in AT, their repertoire as well as their regulation and function in (patho)physiological conditions (e.g., obesity) is not fully resolved. Here, we established FATTLAS, an interactive public database, for improved access and analysis of RNA-seq data of mouse and human AT. After extracting the GPCRome of non-obese and obese individuals, highly expressed and differentially regulated GPCRs were identified. Exemplarily, we describe four receptors (GPR146, MRGPRF, FZD5, PTGER2) and analyzed their functions in a (pre)adipocyte cell model. Besides all receptors being involved in adipogenesis, MRGPRF is essential for adipocyte viability and regulates cAMP levels, while GPR146 modulates adipocyte lipolysis via constitutive activation of Gi proteins. Taken together, by implementing and using FATTLAS we describe four hitherto unrecognized GPCRs associated with AT function and adipogenesis.

6.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834493

ABSTRACT

Obesity is already accompanied by adipose tissue (AT) dysfunction and metabolic disease in children and increases the risk of premature death. Due to its energy-dissipating function, brown AT (BAT) has been discussed as being protective against obesity and related metabolic dysfunction. To analyze the molecular processes associated with BAT development, we investigated genome-wide expression profiles in brown and white subcutaneous and perirenal AT samples of children. We identified 39 upregulated and 26 downregulated genes in uncoupling protein 1 (UCP1)-positive compared to UCP1-negative AT samples. We prioritized for genes that had not been characterized regarding a role in BAT biology before and selected cordon-bleu WH2 repeat protein (COBL), mohawk homeobox (MKX) and myocilin (MYOC) for further functional characterization. The siRNA-mediated knockdown of Cobl and Mkx during brown adipocyte differentiation in vitro resulted in decreased Ucp1 expression, while the inhibition of Myoc led to increased Ucp1 expression. Furthermore, COBL, MKX and MYOC expression in the subcutaneous AT of children is related to obesity and parameters of AT dysfunction and metabolic disease, such as adipocyte size, leptin levels and HOMA-IR. In conclusion, we identify COBL, MKX and MYOC as potential regulators of BAT development and show an association of these genes with early metabolic dysfunction in children.


Subject(s)
Adipose Tissue, Brown , Obesity , Child , Humans , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Cytoskeletal Proteins/metabolism , Eye Proteins/metabolism , Obesity/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/metabolism
7.
Nat Metab ; 4(12): 1697-1712, 2022 12.
Article in English | MEDLINE | ID: mdl-36536132

ABSTRACT

Here we report a heterozygous tandem duplication at the ASIP (agouti signaling protein) gene locus causing ubiquitous, ectopic ASIP expression in a female patient with extreme childhood obesity. The mutation places ASIP under control of the ubiquitously active itchy E3 ubiquitin protein ligase promoter, driving the generation of ASIP in patient-derived native and induced pluripotent stem cells for all germ layers and hypothalamic-like neurons. The patient's phenotype of early-onset obesity, overgrowth, red hair and hyperinsulinemia is concordant with that of mutant mice ubiquitously expressing the homolog nonagouti. ASIP represses melanocyte-stimulating hormone-mediated activation as a melanocortin receptor antagonist, which might affect eating behavior, energy expenditure, adipocyte differentiation and pigmentation, as observed in the index patient. As the type of mutation escapes standard genetic screening algorithms, we rescreened the Leipzig Childhood Obesity cohort of 1,745 patients and identified four additional patients with the identical mutation, ectopic ASIP expression and a similar phenotype. Taken together, our data indicate that ubiquitous ectopic ASIP expression is likely a monogenic cause of human obesity.


Subject(s)
Pediatric Obesity , Child , Humans , Female , Animals , Mice , Agouti Signaling Protein/genetics , Agouti Signaling Protein/metabolism , Pigmentation/genetics , Mutation , Phenotype
8.
Clin Transl Med ; 12(12): e1108, 2022 12.
Article in English | MEDLINE | ID: mdl-36480426

ABSTRACT

BACKGROUND: Recruitment and activation of brown adipose tissue (BAT) results in increased energy expenditure (EE) via thermogenesis and represents an intriguing therapeutic approach to combat obesity and treat associated diseases. Thermogenesis requires an increased and efficient supply of energy substrates and oxygen to the BAT. The hemoprotein myoglobin (MB) is primarily expressed in heart and skeletal muscle fibres, where it facilitates oxygen storage and flux to the mitochondria during exercise. In the last years, further contributions of MB have been assigned to the scavenging of reactive oxygen species (ROS), the regulation of cellular nitric oxide (NO) levels and also lipid binding. There is a substantial expression of MB in BAT, which is induced during brown adipocyte differentiation and BAT activation. This suggests MB as a previously unrecognized player in BAT contributing to thermogenesis. METHODS AND RESULTS: This study analyzed the consequences of MB expression in BAT on mitochondrial function and thermogenesis in vitro and in vivo. Using MB overexpressing, knockdown or knockout adipocytes, we show that expression levels of MB control brown adipocyte mitochondrial respiratory capacity and acute response to adrenergic stimulation, signalling and lipolysis. Overexpression in white adipocytes also increases their metabolic activity. Mutation of lipid interacting residues in MB abolished these beneficial effects of MB. In vivo, whole-body MB knockout resulted in impaired thermoregulation and cold- as well as drug-induced BAT activation in mice. In humans, MB is differentially expressed in subcutaneous (SC) and visceral (VIS) adipose tissue (AT) depots, differentially regulated by the state of obesity and higher expressed in AT samples that exhibit higher thermogenic potential. CONCLUSIONS: These data demonstrate for the first time a functional relevance of MBs lipid binding properties and establish MB as an important regulatory element of thermogenic capacity in brown and likely beige adipocytes.


Subject(s)
Adipocytes, Brown , Adipocytes, White , Adrenergic Agents , Animals , Humans , Mice , Lipids , Myoglobin , Obesity/genetics , Oxygen
9.
Nat Metab ; 4(12): 1684-1696, 2022 12.
Article in English | MEDLINE | ID: mdl-36443525

ABSTRACT

Childhood obesity is a serious public health crisis and a critical factor that determines future obesity prevalence. Signals affecting adipocyte development in early postnatal life have a strong potential to trigger childhood obesity; however, these signals are still poorly understood. We show here that mitochondrial (mt)RNA efflux stimulates transcription of nuclear-encoded genes for mitobiogenesis and thermogenesis in adipocytes of young mice and human infants. While cytosolic mtRNA is a potential trigger of the interferon (IFN) response, young adipocytes lack such a response to cytosolic mtRNA due to the suppression of IFN regulatory factor (IRF)7 expression by vitamin D receptor signalling. Adult and obese adipocytes, however, strongly express IRF7 and mount an IFN response to cytosolic mtRNA. In turn, suppressing IRF7 expression in adult adipocytes restores mtRNA-induced mitobiogenesis and thermogenesis and eventually mitigates obesity. Retrograde mitochondrion-to-nucleus signalling by mtRNA is thus a mechanism to evoke thermogenic potential during early adipocyte development and to protect against obesity.


Subject(s)
Adipocytes, Beige , Pediatric Obesity , Child , Adult , Humans , Animals , Mice , Adipocytes, Beige/metabolism , RNA, Mitochondrial/metabolism , Adipocytes/physiology , Signal Transduction
10.
Adipocyte ; 11(1): 630-642, 2022 12.
Article in English | MEDLINE | ID: mdl-36384443

ABSTRACT

Components of the growth hormone (GH) axis, such as insulin-like growth factor-1 (IGF-1), IGF-1 binding protein-3 (IGFBP-3), GH receptor (GHR) and GH-binding protein (GHBP), regulate growth and metabolic pathways. Here, we asked if serum levels of these factors are altered with overweight/obesity and if this is related to adipose tissue (AT) expression and/or increased fat mass. Furthermore, we hypothesized that expression of GHR, IGF-1 and IGFBP-3 is associated with AT function. Serum GHBP levels were increased in children with overweight/obesity throughout childhood, while for IGF-1 levels and the IGF-1/IGFBP-3 molar ratio obesity-related elevations were detectable until early puberty. Circulating levels did not correlate with AT expression of these factors, which was decreased with overweight/obesity. Independent from obesity, expression of GHR, IGF-1 and IGFBP-3 was related to AT dysfunction,and increased insulin levels. Serum GHBP was associated with liver fat percentage and transaminase levels. We conclude that obesity-related elevations in serum GHBP and IGF-1 are unlikely to be caused by increased AT mass and elevations in GHBP are more closely related to liver status in children. The diminished AT expression of these factors with childhood obesity may contribute to early AT dysfunction and a deterioration of the metabolic state.


Subject(s)
Insulin-Like Growth Factor Binding Protein 3 , Pediatric Obesity , Child , Humans , Insulin-Like Growth Factor I/metabolism , Overweight , Adipose Tissue/metabolism
11.
Nat Metab ; 4(9): 1150-1165, 2022 09.
Article in English | MEDLINE | ID: mdl-36097183

ABSTRACT

Studies in genetically 'identical' individuals indicate that as much as 50% of complex trait variation cannot be traced to genetics or to the environment. The mechanisms that generate this 'unexplained' phenotypic variation (UPV) remain largely unknown. Here, we identify neuronatin (NNAT) as a conserved factor that buffers against UPV. We find that Nnat deficiency in isogenic mice triggers the emergence of a bi-stable polyphenism, where littermates emerge into adulthood either 'normal' or 'overgrown'. Mechanistically, this is mediated by an insulin-dependent overgrowth that arises from histone deacetylase (HDAC)-dependent ß-cell hyperproliferation. A multi-dimensional analysis of monozygotic twin discordance reveals the existence of two patterns of human UPV, one of which (Type B) phenocopies the NNAT-buffered polyphenism identified in mice. Specifically, Type-B monozygotic co-twins exhibit coordinated increases in fat and lean mass across the body; decreased NNAT expression; increased HDAC-responsive gene signatures; and clinical outcomes linked to insulinemia. Critically, the Type-B UPV signature stratifies both childhood and adult cohorts into four metabolic states, including two phenotypically and molecularly distinct types of obesity.


Subject(s)
Membrane Proteins , Nerve Tissue Proteins , Adaptation, Physiological , Adult , Animals , Child , Histone Deacetylases , Humans , Insulin , Membrane Proteins/metabolism , Mice , Nerve Tissue Proteins/genetics , Obesity/genetics , Obesity/metabolism
12.
Int J Obes (Lond) ; 46(10): 1883-1891, 2022 10.
Article in English | MEDLINE | ID: mdl-35931812

ABSTRACT

OBJECTIVE: Obesity is complicated by inflammatory activation of the innate immune system. Stimulation of the calcium-sensing receptor (CaSR) by extra-cellular calcium ions ([Ca2+]ex) can trigger NLRP3 inflammasome activation and inflammation. We hypothesised, that this mechanism might contribute to the activation of adipose tissue (AT) in obesity, and investigated [Ca2+]ex-induced, CaSR mediated IL-1ß release by macrophages in obesity. METHODS: [Ca2+]ex-induced IL-1ß release was investigated in monocyte-derived macrophages (MDM) generated from peripheral blood of patients with obesity and from normal-weight controls. Visceral and subcutaneous AT biosamples were stimulated with [Ca2+]ex, and IL-1ß release, as well as expression of NLRP3 inflammasome and cytokine genes, was determined. RESULTS: Both MDM and AT readily responded with concentration-dependent IL-1ß release already at low, near physiological concentrations to addition of [Ca2+]ex, which was more than 80 fold higher than the LPS-induced effect. IL-1ß levels induced by [Ca2+]ex were significantly higher not only in MDM from patients with obesity compared to controls, but also in visceral versus subcutaneous AT. This fat-depot difference was also reflected by mRNA expression levels of inflammasome and cytokine genes. CONCLUSIONS: Obesity renders macrophages more susceptible to [Ca2+]ex-induced IL-1ß release and pyroptosis. Increased susceptibility was independent of the response to LPS and circulating CRP arguing against mere pro-inflammatory pre-activation of monocytes. Instead, we propose that CaSR mediated signalling is relevant for the deleterious innate immune activation in obesity.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Calcium/metabolism , Humans , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/metabolism , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Obesity/metabolism , RNA, Messenger/metabolism , Receptors, Calcium-Sensing/metabolism
13.
Diabetes Care ; 45(8): 1822-1832, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35708509

ABSTRACT

OBJECTIVE: Suboptimal nutrition in pregnancy is associated with worse offspring cardiometabolic health. DNA methylation may be an underlying mechanism. We meta-analyzed epigenome-wide association studies (EWAS) of maternal dietary glycemic index and load with cord blood DNA methylation. RESEARCH DESIGN AND METHODS: We calculated maternal glycemic index and load from food frequency questionnaires and ran EWAS on cord blood DNA methylation in 2,003 mother-offspring pairs from three cohorts. Analyses were additionally stratified by maternal BMI categories. We looked-up the findings in EWAS of maternal glycemic traits and BMI as well as in EWAS of birth weight and child BMI. We examined associations with gene expression in child blood in the online Human Early Life Exposome eQTM catalog and in 223 adipose tissue samples. RESULTS: Maternal glycemic index and load were associated with cord blood DNA methylation at 41 cytosine-phosphate-guanine sites (CpGs, P < 1.17 × 10-7), mostly in mothers with overweight/obesity. We did not observe overlap with CpGs associated with maternal glycemic traits, BMI, or child birth weight or BMI. Only DNA methylation at cg24458009 and cg23347399 was associated with expression of PCED1B and PCDHG, respectively, in child blood, and DNA methylation at cg27193519 was associated with expression of TFAP4, ZNF500, PPL, and ANKS3 in child subcutaneous adipose tissue. CONCLUSIONS: We observed multiple associations of maternal glycemic index and load during pregnancy with cord blood DNA methylation, mostly in mothers with overweight/obesity; some of these CpGs were associated with gene expression. Additional studies are required to further explore functionality, uncover causality, and study pathways to offspring health.


Subject(s)
DNA Methylation , Glycemic Load , Birth Weight/genetics , Blood Glucose , Child , DNA Methylation/genetics , Female , Fetal Blood , Glycemic Index , Humans , Obesity/genetics , Overweight/genetics , Pregnancy
14.
Int J Mol Sci ; 23(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35457174

ABSTRACT

Obesity develops early in childhood and is accompanied by early signs of adipose tissue (AT) dysfunction and metabolic disease in children. In order to analyse the molecular processes during obesity-related AT accumulation in children, we investigated genome-wide expression profiles in AT samples, isolated adipocytes, and stromal vascular fraction (SVF) cells and assessed their relation to obesity as well as biological and functional AT parameters. We detected alterations in gene expression associated with obesity and related parameters, i.e., BMI SDS, adipocyte size, macrophage infiltration, adiponectin, and/or leptin. While differential gene expression in AT and adipocytes shared an enrichment in metabolic pathways and pathways related to extracellular structural organisation, SVF cells showed an overrepresentation in inflammatory pathways. In adipocytes, we found the strongest positive association for epidermal growth factor-like protein 6 (EGFL6) with adipocyte hypertrophy. EGFL6 was also upregulated during in vitro adipocyte differentiation. In children, EGFL6 expression was positively correlated to parameters of AT dysfunction and metabolic disease such as macrophage infiltration into AT, hs-CRP, leptin levels, and HOMA-IR. In conclusion, we provide evidence for early alterations in AT gene expression related to AT dysfunction in children and identified EGFL6 as potentially being involved in processes underlying the pathogenesis of metabolic disease.


Subject(s)
Adipose Tissue , Leptin , Adipocytes/metabolism , Adipose Tissue/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Adhesion Molecules/metabolism , Child , Gene Expression Profiling , Humans , Leptin/genetics , Leptin/metabolism , Obesity/metabolism
15.
J Clin Endocrinol Metab ; 107(2): e836-e851, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34448000

ABSTRACT

CONTEXT: MSCA1 (mesenchymal stem cell antigen 1) and CD36 (cluster of differentiation 36) have been described as novel adipocyte progenitor markers in adults with a potential relevance for obesity and adipocyte progenitor function. OBJECTIVE: With the early manifestation of obesity in children and formation of adipose tissue (AT) dysfunction, children provide the opportunity to characterize the function of MSCA1 and CD36 during physiological AT accumulation and with obesity and related disease. METHODS: We investigated MSCA1 and CD36 expression in adipocytes and stroma vascular fraction (SVF) cells from 133 children of the Leipzig AT Childhood cohort with regard to AT accumulation and biology. In a subsample we analyzed how MSCA1 and CD36 expression is related to adipose progenitor capacities in vitro (ie, proliferation, differentiation and mitochondrial function). RESULTS: Both MSCA1 and CD36 are differentially expressed in adipocytes and SVF cells of children. MSCA1 expression is positively correlated to obesity-associated AT dysfunction (ie, adipocyte hypertrophy and serum high-sensitivity C-reactive protein), and high SVF MSCA1 expression is associated with increased mitochondrial respiration in vitro. CD36 expression is not associated with AT dysfunction but SVF CD36 expression is downregulated in children with overweight and obesity and shows a positive association with the differentiation capacity of SVF cells ex vivo and in vitro. CONCLUSION: Both MSCA1 and CD36 are associated with obesity-related alterations in AT of children. In particular, CD36 expression predicts adipogenic potential of SVF cells, indicating a potential role in the regulation of adipocyte hyperplasia and hypertrophy with obesity development in children.


Subject(s)
Adipogenesis , Antigens, Surface/metabolism , Pediatric Obesity/physiopathology , Subcutaneous Fat/physiopathology , Adipocytes/metabolism , Adolescent , Antigens, Surface/analysis , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Male , Stromal Vascular Fraction/metabolism , Subcutaneous Fat/cytology , Subcutaneous Fat/metabolism
16.
EClinicalMedicine ; 37: 100977, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34386750

ABSTRACT

BACKGROUND: Obesity can affect linear growth of children but there is uncertainty regarding the dynamics and potential causes. METHODS: In the population-based LIFE Child and the obesity-enriched Leipzig Obesity Childhood cohorts (8,629 children, 37,493 measurements), recruited from 1999 to 2018 in Germany, we compared height, growth, and endocrine parameters between normal-weight and children with obesity (0-20 years). Derived from the independent German CrescNet registry (12,703 children) we generated height reference values specific for children with obesity (data collected from 1999 to 2020). FINDINGS: Children with obesity were significantly taller than normal-weight peers, differing at maximum by 7·6 cm (1·4 height, standard deviation scores or SDS) at age 6-8 years. Already at birth, children with obesity were slightly taller and thereafter had increased growth velocities by up to 1·2 cm/year. This growth acceleration was unrelated to parental height, but was accompanied by increased levels of insulin-like growth factor-1 (IGF-1), insulin and leptin. During puberty, children with obesity showed a catch-down in height SDS. The reduction in pubertal growth velocity by up to 25% coincided with a decrease in levels of IGF-1 (by 17%) and testosterone (by 62%) in boys and estradiol (by 37%) in girls. We confirmed these alterations in growth in the independent CrescNet cohort and furthermore provide height reference values for children with obesity for open access. INTERPRETATION: Dynamics of linear growth are altered distinctively in different developmental phases in children with obesity. Early emergence before other profound comorbidities implies predisposition, environmental, and/or endocrine factors affecting growth in early life. Height reference values for children with obesity may enhance the precision of clinical health surveillance. FUNDING: German Research Foundation, German Diabetes Association, EU, ESF, ERDF, State of Saxony, ESPE, Hexal, Novo Nordisk, Pfizer Pharma.

17.
J Biol Chem ; 297(2): 100968, 2021 08.
Article in English | MEDLINE | ID: mdl-34273354

ABSTRACT

The tumor suppressor phosphatase and tensin homolog (PTEN) negatively regulates the insulin signaling pathway. Germline PTEN pathogenic variants cause PTEN hamartoma tumor syndrome (PHTS), associated with lipoma development in children. Adipose progenitor cells (APCs) lose their capacity to differentiate into adipocytes during continuous culture, whereas APCs from lipomas of patients with PHTS retain their adipogenic potential over a prolonged period. It remains unclear which mechanisms trigger this aberrant adipose tissue growth. To investigate the role of PTEN in adipose tissue development, we performed functional assays and RNA-Seq of control and PTEN knockdown APCs. Reduction of PTEN levels using siRNA or CRISPR led to enhanced proliferation and differentiation of APCs. Forkhead box protein O1 (FOXO1) transcriptional activity is known to be regulated by insulin signaling, and FOXO1 was downregulated at the mRNA level while its inactivation through phosphorylation increased. FOXO1 phosphorylation initiates the expression of the lipogenesis-activating transcription factor sterol regulatory element-binding protein 1 (SREBP1). SREBP1 levels were higher after PTEN knockdown and may account for the observed enhanced adipogenesis. To validate this, we overexpressed constitutively active FOXO1 in PTEN CRISPR cells and found reduced adipogenesis, accompanied by SREBP1 downregulation. We observed that PTEN CRISPR cells showed less senescence compared with controls and the senescence marker CDKN1A (p21) was downregulated in PTEN knockdown cells. Cellular senescence was the most significantly enriched pathway found in RNA-Seq of PTEN knockdown versus control cells. These results provide evidence that PTEN is involved in the regulation of APC proliferation, differentiation, and senescence, thereby contributing to aberrant adipose tissue growth in patients with PHTS.


Subject(s)
Adipose Tissue/pathology , Cell Differentiation , Cell Proliferation , Cellular Senescence , Lipoma/pathology , Mesenchymal Stem Cells/pathology , PTEN Phosphohydrolase/metabolism , Adipose Tissue/metabolism , Cells, Cultured , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Humans , Lipoma/metabolism , Mesenchymal Stem Cells/metabolism , PTEN Phosphohydrolase/genetics , Signal Transduction
18.
Environ Int ; 156: 106730, 2021 11.
Article in English | MEDLINE | ID: mdl-34186270

ABSTRACT

Bisphenol A (BPA), which is used in a variety of consumer-related plastic products, was reported to cause adverse effects, including disruption of adipocyte differentiation, interference with obesity mechanisms, and impairment of insulin- and glucose homeostasis. Substitute compounds are increasingly emerging but are not sufficiently investigated.We aimed to investigate the mode of action of BPA and four of its substitutes during the differentiation of human preadipocytes to adipocytes and their molecular interaction with peroxisome proliferator-activated receptor γ (PPARγ), a pivotal regulator of adipogenesis.Binding and effective biological activation of PPARγ were investigated by surface plasmon resonance and reporter gene assay, respectively. Human preadipocytes were continuously exposed to BPA, BPS, BPB, BPF, BPAF, and the PPARγ-antagonist GW9662. After 12 days of differentiation, lipid production was quantified via Oil Red O staining, and global protein profiles were assessed using LC-MS/MS-based proteomics. All tested bisphenols bound to human PPARγ with similar efficacy as the natural ligand 15d-PGJ2in vitroand provoked an antagonistic effect on PPARγ in the reporter gene assay at non-cytotoxic concentrations. During the differentiation of human preadipocytes, all bisphenols decreased lipid production. Global proteomics displayed a down-regulation of adipogenesis and metabolic pathways, similar to GW9662. Interestingly, pro-inflammatory pathways were up-regulated, MCP1 release was increased, and adiponectin decreased. pAKT/AKT ratios revealed significantly reduced insulin sensitivity by BPA, BPB, and BPS upon insulin stimulation.Thus, our results show that not only BPA but also its substitutes disrupt crucial metabolic functions and insulin signaling in adipocytes under low, environmentally relevant concentrations. This effect, mediated through inhibition of PPARγ, may promote hypertrophy of adipose tissue and increase the risk of developing metabolic syndrome, including insulin resistance.


Subject(s)
Benzhydryl Compounds , Tandem Mass Spectrometry , Adipocytes , Adipogenesis , Benzhydryl Compounds/toxicity , Chromatography, Liquid , Humans , Phenols
19.
Metabolism ; 116: 154438, 2021 03.
Article in English | MEDLINE | ID: mdl-33221380

ABSTRACT

BACKGROUND: Deficiency in the leptin-leptin receptor (LEPR) axis leads to severe, and potentially treatable, obesity in humans. To guide clinical decision-making, the functional relevance of variants in the LEPR gene needs to be carefully investigated. CASES AND METHODS: We characterized the functional impact of LEPR variants identified in two patients with severe early-onset obesity (1: compound heterozygous for the novel variant p.Tyr411del and p.Trp664Arg; 2: heterozygous for p.Arg612His) by investigating leptin-mediated signaling, leptin binding, receptor expression on cell surfaces, and receptor dimerization and activation for either wild-type and/or mutant LEPR. RESULTS: Leptin-induced STAT3-phosphorylation was blunted the novel p.Tyr411del or the p.Trp664Arg variant and mildly reduced with the p.Arg612His variant. Computational structure prediction suggested impaired leptin binding for all three LEPR variants. Experimentally, reduced leptin binding of all mutant proteins was due to diminished LEPR expression on the cell surface, with the p.Trp664Arg mutations being the most affected. Considering the heterozygosity in our patients, we assessed the heterodimerization capacity with the wild-type LEPR, which was retained for the p.Tyr411del and p.Arg612His variants. Finally, mimicking (compound) heterozygosity, we confirmed abolished STAT3-phosphorylation for the variant combination [p.Tyr411del + p.Trp664Arg] as found in patient 1, whereas it was retained for [p.Arg612His + wilde type] as found in patient 2. CONCLUSIONS: The novel p.Tyr411del mutation causes complete loss of function alone (and combined with p.Trp664Arg) and is likely the cause for the early onset obesity, qualifying the patient for pharmacologic treatment. Heterozygosity for the p.Arg612His variant, however, appears unlikely to be solely responsible for the phenotype.


Subject(s)
Obesity, Morbid/genetics , Obesity, Morbid/therapy , Pediatric Obesity/genetics , Pediatric Obesity/therapy , Receptors, Leptin/genetics , Child , Decision Making , Female , HEK293 Cells , Humans , Infant , Models, Molecular , Mutation, Missense , Obesity, Morbid/diagnosis , Pediatric Obesity/diagnosis , Pedigree , Polymorphism, Single Nucleotide , Protein Conformation , Receptors, Leptin/chemistry
20.
Heart ; 107(13): 1054-1061, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-33234670

ABSTRACT

BACKGROUND: A Mediterranean diet is favourable for cardiometabolic risk. OBJECTIVE: To examine the residual effect of a green Mediterranean diet, further enriched with green plant-based foods and lower meat intake, on cardiometabolic risk. METHODS: For the DIRECT-PLUS parallel, randomised clinical trial we assigned individuals with abdominal obesity/dyslipidaemia 1:1:1 into three diet groups: healthy dietary guidance (HDG), Mediterranean and green Mediterranean diet, all combined with physical activity. The Mediterranean diets were equally energy restricted and included 28 g/day walnuts. The green Mediterranean diet further included green tea (3-4 cups/day) and a Wolffia globosa (Mankai strain; 100 g/day frozen cubes) plant-based protein shake, which partially substituted animal protein. We examined the effect of the 6-month dietary induction weight loss phase on cardiometabolic state. RESULTS: Participants (n=294; age 51 years; body mass index 31.3 kg/m2; waist circumference 109.7 cm; 88% men; 10 year Framingham risk score 4.7%) had a 6-month retention rate of 98.3%. Both Mediterranean diets achieved similar weight loss ((green Mediterranean -6.2 kg; Mediterranean -5.4 kg) vs the HDG group -1.5 kg; p<0.001), but the green Mediterranean group had a greater reduction in waist circumference (-8.6 cm) than the Mediterranean (-6.8 cm; p=0.033) and HDG (-4.3 cm; p<0.001) groups. Stratification by gender showed that these differences were significant only among men. Within 6 months the green Mediterranean group achieved greater decrease in low-density lipoprotein cholesterol (LDL-C; green Mediterranean -6.1 mg/dL (-3.7%), -2.3 (-0.8%), HDG -0.2 mg/dL (+1.8%); p=0.012 between extreme groups), diastolic blood pressure (green Mediterranean -7.2 mm Hg, Mediterranean -5.2 mm Hg, HDG -3.4 mm Hg; p=0.005 between extreme groups), and homeostatic model assessment for insulin resistance (green Mediterranean -0.77, Mediterranean -0.46, HDG -0.27; p=0.020 between extreme groups). The LDL-C/high-density lipoprotein cholesterol (HDL-C) ratio decline was greater in the green Mediterranean group (-0.38) than in the Mediterranean (-0.21; p=0.021) and HDG (-0.14; p<0.001) groups. High-sensitivity C-reactive protein reduction was greater in the green Mediterranean group (-0.52 mg/L) than in the Mediterranean (-0.24 mg/L; p=0.023) and HDG (-0.15 mg/L; p=0.044) groups. The green Mediterranean group achieved a better improvement (-3.7% absolute risk reduction) in the 10-year Framingham Risk Score (Mediterranean-2.3%; p=0.073, HDG-1.4%; p<0.001). CONCLUSIONS: The green MED diet, supplemented with walnuts, green tea and Mankai and lower in meat/poultry, may amplify the beneficial cardiometabolic effects of Mediterranean diet. TRIAL REGISTRATION NUMBER: This study is registered under ClinicalTrials.gov Identifier no NCT03020186.

SELECTION OF CITATIONS
SEARCH DETAIL
...