Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 132024 May 24.
Article in English | MEDLINE | ID: mdl-38787918

ABSTRACT

The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer-driven tissue factors in shaping nutrient availability in these tumors.


Cancer cells convert nutrients into energy differently compared to healthy cells. This difference in metabolism allows them to grow and divide more quickly and sometimes to migrate to different areas of the body. The environment around cancer cells ­ known as the tumor microenvironment ­ contains a variety of different cells and blood vessels, which are bathed in interstitial fluid. This microenvironment provides nutrients for the cancer cells to metabolize, and therefore influences how well a tumor grows and how it might respond to treatment. Recent advances with techniques such as mass spectrometry, which can measure the chemical composition of a substance, have allowed scientists to measure nutrient levels in the tumor microenvironments of mice. However, it has been more difficult to conduct such studies in humans, as well as to compare the tumor microenvironment to the healthy tissue the tumors arose from. Abbott, Ali, Reinfeld et al. aimed to fill this gap in knowledge by using mass spectrometry to measure the nutrient levels in the tumor microenvironment of 55 patients undergoing surgery to remove kidney tumors. Comparing the type and levels of nutrients in the tumor interstitial fluid, the neighboring healthy kidney and the blood showed that nutrients in the tumor and healthy kidney were more similar to each other than those in the blood. For example, both the tumor and healthy kidney interstitial fluids contained less glucose than the blood. However, the difference between nutrient composition in the tumor and healthy kidney interstitial fluids was insignificant, suggesting that the healthy kidney and its tumor share a similar environment. Taken together, the findings indicate that kidney cancer cells must adapt to the nutrients available in the kidney, rather than changing what nutrients are available in the tissue. Future studies will be required to investigate whether this finding also applies to other types of cancer. A better understanding of how cancer cells adapt to their environments may aid the development of drugs that aim to disrupt the metabolism of tumors.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Metabolome , Nutrients , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Humans , Kidney Neoplasms/metabolism , Nutrients/metabolism , Metabolomics/methods , Tumor Microenvironment , Extracellular Fluid/metabolism , Female , Male , Lipidomics
2.
J Clin Invest ; 134(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618956

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is characterized by dysregulated hypoxia signaling and a tumor microenvironment (TME) highly enriched in myeloid and lymphoid cells. Loss of the von Hippel Lindau (VHL) gene is a critical early event in ccRCC pathogenesis and promotes stabilization of HIF. Whether VHL loss in cancer cells affects immune cells in the TME remains unclear. Using Vhl WT and Vhl-KO in vivo murine kidney cancer Renca models, we found that Vhl-KO tumors were more infiltrated by immune cells. Tumor-associated macrophages (TAMs) from Vhl-deficient tumors demonstrated enhanced in vivo glucose consumption, phagocytosis, and inflammatory transcriptional signatures, whereas lymphocytes from Vhl-KO tumors showed reduced activation and a lower response to anti-programmed cell death 1 (anti-PD-1) therapy in vivo. The chemokine CX3CL1 was highly expressed in human ccRCC tumors and was associated with Vhl deficiency. Deletion of Cx3cl1 in cancer cells decreased myeloid cell infiltration associated with Vhl loss to provide a mechanism by which Vhl loss may have contributed to the altered immune landscape. Here, we identify cancer cell-specific genetic features that drove environmental reprogramming and shaped the tumor immune landscape, with therapeutic implications for the treatment of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Mice , Carcinogenesis/genetics , Carcinoma, Renal Cell/genetics , Cell Transformation, Neoplastic , Kidney , Kidney Neoplasms/genetics , Tumor Microenvironment , Von Hippel-Lindau Tumor Suppressor Protein/genetics
3.
bioRxiv ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38187626

ABSTRACT

The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer driven tissue factors in shaping nutrient availability in these tumors.

4.
Cell Metab ; 36(1): 10-20, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38118440

ABSTRACT

Cells in multicellular organisms experience diverse neighbors, signals, and evolving physical environments that drive functional and metabolic demands. To maintain proper development and homeostasis while avoiding inappropriate cell proliferation or death, individual cells interact with their neighbors via "social" cues to share and partition available nutrients. Metabolic signals also contribute to cell fate by providing biochemical links between cell-extrinsic signals and available resources. In addition to metabolic checkpoints that sense nutrients and directly supply molecular intermediates for biosynthetic pathways, many metabolites directly signal or provide the basis for post-translational modifications of target proteins and chromatin. In this review, we survey the landscape of T cell nutrient sensing and metabolic signaling that supports proper immunity while avoiding immunodeficiency or autoimmunity. The integration of cell-extrinsic microenvironmental cues with cell-intrinsic metabolic signaling provides a social metabolic control model to integrate cell signaling, metabolism, and fate.


Subject(s)
Chromatin , T-Lymphocytes , Cell Differentiation , Chromatin/metabolism , Signal Transduction , Nutrients
5.
J Immunol ; 211(4): 563-575, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37341499

ABSTRACT

Activated T cells undergo metabolic reprogramming to meet anabolic, differentiation, and functional demands. Glutamine supports many processes in activated T cells, and inhibition of glutamine metabolism alters T cell function in autoimmune disease and cancer. Multiple glutamine-targeting molecules are under investigation, yet the precise mechanisms of glutamine-dependent CD8 T cell differentiation remain unclear. We show that distinct strategies of glutamine inhibition by glutaminase-specific inhibition with small molecule CB-839, pan-glutamine inhibition with 6-diazo-5-oxo-l-norleucine (DON), or by glutamine-depleted conditions (No Q) produce distinct metabolic differentiation trajectories in murine CD8 T cells. T cell activation with CB-839 treatment had a milder effect than did DON or No Q treatment. A key difference was that CB-839-treated cells compensated with increased glycolytic metabolism, whereas DON and No Q-treated cells increased oxidative metabolism. However, all glutamine treatment strategies elevated CD8 T cell dependence on glucose metabolism, and No Q treatment caused adaptation toward reduced glutamine dependence. DON treatment reduced histone modifications and numbers of persisting cells in adoptive transfer studies, but those T cells that remained could expand normally upon secondary Ag encounter. In contrast, No Q-treated cells persisted well yet demonstrated decreased secondary expansion. Consistent with reduced persistence, CD8 T cells activated in the presence of DON had reduced ability to control tumor growth and reduced tumor infiltration in adoptive cell therapy. Overall, each approach to inhibit glutamine metabolism confers distinct effects on CD8 T cells and highlights that targeting the same pathway in different ways can elicit opposing metabolic and functional outcomes.


Subject(s)
Diazooxonorleucine , Neoplasms , Animals , Mice , Diazooxonorleucine/pharmacology , Glutamine/metabolism , Neoplasms/therapy , Neoplasms/metabolism , CD8-Positive T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...