Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
IEEE Trans Biomed Eng ; PP2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625764

ABSTRACT

OBJECTIVE: Oscillometric finger pressing is a smartphone-based blood pressure (BP) monitoring method. Finger photoplethysmography (PPG) oscillations and pressure are measured during a steady increase in finger pressure, and an algorithm computes systolic BP (SP) and diastolic BP (DP) from the measurements. The objective was to assess the impact of finger artery viscoelasticity on the BP computation. METHODS: Nonlinear viscoelastic models relating transmural pressure (finger BP - applied pressure) to PPG oscillations during finger pressing were developed. The output of each model to a measured transmural pressure input was fitted to measured PPG oscillations from 15 participants. A parametric sensitivity analysis was performed via model simulations to elucidate the viscoelastic effect on the derivative-based BP computation algorithm. RESULTS: A Wiener viscoelastic model comprising a first-order transfer function followed by a static sigmoidal function fitted the measured PPG oscillations better than an elastic model containing only the static function (median (IQR) error of 30.5% (25.6%-34.0%) vs 50.9% (46.7%-53.7%); p<0.01). In Wiener model simulations, the derivative algorithm underestimated SP, especially with high pulse pressure and low transfer function cutoff frequency (i.e., greater viscoelasticity). The mean of the normalized PPG waveform at the maximum oscillation beat was found to correlate with the cutoff frequency (r = -0.8) and could thus possibly be used to compensate for viscoelasticity. CONCLUSION: Finger artery viscoelasticity negatively impacts oscillometric BP computation algorithms but can potentially be compensated for using available measurements. SIGNIFICANCE: These findings may help in converting smartphones into truly cuffless BP monitors for improving hypertension awareness and control.

2.
J Electrocardiol ; 81: 153-155, 2023.
Article in English | MEDLINE | ID: mdl-37708738

ABSTRACT

Cuffless blood pressure (BP) measurement could improve hypertension awareness and control and is being widely pursued. Some have proposed to estimate BP from the electrocardiogram (ECG) alone despite little physiological basis. In this minireview, we extracted the most relevant articles related to ECG-based BP estimation. Our findings suggest that, as expected, estimating BP from ECG does not appear to be viable. Most notably, we have not found any evidence that ECG features can track BP changes. At best, certain ECG features may indicate heart disease and thus correlate with high BP, but this may not be clinically useful.


Subject(s)
Heart Diseases , Hypertension , Humans , Blood Pressure , Electrocardiography , Blood Pressure Determination , Hypertension/diagnosis , Pulse Wave Analysis
3.
IEEE Trans Biomed Eng ; 70(11): 3052-3063, 2023 11.
Article in English | MEDLINE | ID: mdl-37195838

ABSTRACT

OBJECTIVE: Oscillometric finger pressing is a potential method for absolute blood pressure (BP) monitoring via a smartphone. The user presses their fingertip against a photoplethysmography-force sensor unit on a smartphone to steadily increase the external pressure on the underlying artery. Meanwhile, the phone guides the finger pressing and computes systolic BP (SP) and diastolic BP (DP) from the measured blood volume oscillations and finger pressure. The objective was to develop and evaluate reliable finger oscillometric BP computation algorithms. METHODS: The collapsibility of thin finger arteries was exploited in an oscillometric model to develop simple algorithms for computing BP from the finger pressing measurements. These algorithms extract features from "width" oscillograms (oscillation width versus finger pressure functions) and the conventional "height" oscillogram for markers of DP and SP. Finger pressing measurements were obtained using a custom system along with reference arm cuff BP measurements from 22 subjects. Measurements were also obtained during BP interventions in some subjects for 34 total measurements. RESULTS: An algorithm employing the average of width and height oscillogram features predicted DP with correlation of 0.86 and precision error of 8.6 mmHg with respect to the reference measurements. Analysis of arm oscillometric cuff pressure waveforms from an existing patient database provided evidence that the width oscillogram features are better suited to finger oscillometry. CONCLUSION: Analysis of oscillation width variations during finger pressing can improve DP computation. SIGNIFICANCE: The study findings may help in converting widely available devices into truly cuffless BP monitors for improving hypertension awareness and control.


Subject(s)
Blood Pressure Determination , Smartphone , Humans , Blood Pressure/physiology , Oscillometry/methods , Blood Pressure Determination/methods , Arterial Pressure
4.
Hypertension ; 80(3): 534-540, 2023 03.
Article in English | MEDLINE | ID: mdl-36458550

ABSTRACT

Conventional blood pressure (BP) measurement devices based on an inflatable cuff only provide a narrow view of the continuous BP profile. Cuffless BP measuring technologies could permit numerous BP readings throughout daily life and thereby considerably improve the assessment and management of hypertension. Several wearable cuffless BP devices based on pulse wave analysis (applied to a photoplethysmography or tonometry waveform) with or without use of pulse arrival time are now available on the market. The key question is: Can these devices provide accurate measurement of BP? Microsoft Research recently published a complex article describing perhaps the most important and highest resource project to date (Aurora Project) on assessing the accuracy of several pulse wave analysis and pulse wave analysis-pulse arrival time devices. The overall results from 1125 participants were clear-cut negative. The present article motivates and describes emerging cuffless BP devices and then summarizes the Aurora Project. The study methodology and findings are next discussed in the context of regulatory-cleared devices, physiology, and related studies, and the study strengths and limitations are pinpointed thereafter. Finally, the implications of the Aurora Project are briefly stated and recommendations for future work are offered to finally realize the considerable potential of cuffless BP measurement in health care.


Subject(s)
Blood Pressure Determination , Hypertension , Humans , Blood Pressure/physiology , Blood Pressure Determination/methods , Hypertension/diagnosis , Sphygmomanometers , Heart Rate , Pulse Wave Analysis/methods
5.
IEEE Trans Biomed Eng ; 70(2): 715-722, 2023 02.
Article in English | MEDLINE | ID: mdl-36006885

ABSTRACT

OBJECTIVE: Oscillogram modeling is a powerful tool for understanding and advancing popular oscillometric blood pressure (BP) measurement. A reduced oscillogram model relating cuff pressure oscillation amplitude ( ∆O) to external cuff pressure of the artery ( Pe) is: [Formula: see text], where g(P) is the arterial compliance versus transmural pressure ( P) curve, Ps and Pd are systolic and diastolic BP, and k is the reciprocal of the cuff compliance. The objective was to determine an optimal functional form for the arterial compliance curve. METHODS: Eight prospective, three-parameter functions of the brachial artery compliance curve were compared. The study data included oscillometric arm cuff pressure waveforms and invasive brachial BP from 122 patients covering a 20-120 mmHg pulse pressure range. The oscillogram measurements were constructed from the cuff pressure waveforms. Reduced oscillogram models, inputted with measured systolic and diastolic BP and each parametric brachial artery compliance curve function, were optimally fitted to the oscillogram measurements in the least squares sense. RESULTS: An exponential-linear function yielded as good or better model fits compared to the other functions, with errors of 7.9±0.3 and 5.1±0.2% for tail-trimmed and lower half-trimmed oscillogram measurements. Importantly, this function was also the most tractable mathematically. CONCLUSION: A three-parameter exponential-linear function is an optimal form for the arterial compliance curve in the reduced oscillogram model and may thus serve as the standard function for this model henceforth. SIGNIFICANCE: The complete, reduced oscillogram model determined herein can potentially improve oscillometric BP measurement accuracy while advancing foundational knowledge.


Subject(s)
Arterial Pressure , Blood Pressure Determination , Humans , Blood Pressure/physiology , Prospective Studies , Brachial Artery/physiology
6.
IEEE J Biomed Health Inform ; 26(12): 5942-5952, 2022 12.
Article in English | MEDLINE | ID: mdl-36121945

ABSTRACT

OBJECTIVE: To develop and evaluate an accurate method for cuffless blood pressure (BP) estimation during moderate- and heavy-intensity exercise. METHODS: Twelve participants performed three cycling exercises: a ramp-incremental exercise to exhaustion, and moderate and heavy pseudorandom binary sequence exercises on an electronically braked cycle ergometer over the course of 21 minutes. Subject-specific and population-based nonlinear autoregressive models with exogenous inputs (NARX) were compared with feedforward artificial neural network (ANN) models and pulse arrival time (PAT) models. RESULTS: Population-based NARX models, (applying leave-one-subject-out cross-validation), performed better than the other models and showed good capability for estimating large changes in mean arterial pressure (MAP). The models were unable to track consistent decreases in BP during prolonged exercise caused by reduction in peripheral vascular resistance, since this information is apparently not encoded in the employed proxy physiological signals (electrocardiography and forehead PPG) used for BP estimation. Nevertheless, the population-based NARX model had an error standard deviation of 11.0 mmHg during the entire exercise window, which improved to 9.0 mmHg when the model was periodically calibrated every 7 minutes. CONCLUSION: Population-based NARX models can estimate BP during moderate- and heavy-intensity exercise but need periodic calibration to account for the change in vascular resistance during exertion. SIGNIFICANCE: MAP can be continuously tracked during exercise using only wearable sensors, making monitoring exercise physiology more convenient and accessible.


Subject(s)
Blood Pressure Determination , Wearable Electronic Devices , Humans , Blood Pressure/physiology , Blood Pressure Determination/methods , Photoplethysmography/methods , Electrocardiography/methods , Pulse Wave Analysis/methods
7.
Sci Rep ; 12(1): 7948, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35562410

ABSTRACT

A substantial barrier to the clinical adoption of cuffless blood pressure (BP) monitoring techniques is the lack of unified error standards and methods of estimating measurement uncertainty. This study proposes a fusion approach to improve accuracy and estimate prediction interval (PI) as a proxy for uncertainty for cuffless blood BP monitoring. BP was estimated during activities of daily living using three model architectures: nonlinear autoregressive models with exogenous inputs, feedforward neural network models, and pulse arrival time models. Multiple one-class support vector machine (OCSVM) models were trained to cluster data in terms of the percentage of outliers. New BP estimates were then assigned to a cluster using the OCSVMs hyperplanes, and the PIs were estimated using the BP error standard deviation associated with different clusters. The OCSVM was used to estimate the PI for the three BP models. The three BP estimations from the models were fused using the covariance intersection fusion algorithm, which improved BP and PI estimates in comparison with individual model precision by up to 24%. The employed model fusion shows promise in estimating BP and PI for potential clinical uses. The PI indicates that about 71%, 64%, and 29% of the data collected from sitting, standing, and walking can result in high-quality BP estimates. Our PI estimator offers an effective uncertainty metric to quantify the quality of BP estimates and can minimize the risk of false diagnosis.


Subject(s)
Hypertension , Photoplethysmography , Activities of Daily Living , Blood Pressure/physiology , Humans , Photoplethysmography/methods , Pulse Wave Analysis/methods , Uncertainty
8.
Sensors (Basel) ; 21(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34884124

ABSTRACT

OBJECTIVES: Grip force during hand tool operation is the primary contributor to tendon strain and related wrist injuries, whereas push force is a contributor to shoulder injuries. However, both cannot be directly measured using a single measurement instrument. The objective of this research was to develop and test an algorithm to isolate the grip and push force distributions from in-situ hand-handle pressure measurements and to quantify their distributions among industrial workers using an electric nutrunner. METHODS: Experienced automobile assembly line workers used an industrial nutrunner to tighten fasteners at various locations and postures. The pressure applied by the hand on the tool handle was measured dynamically using pressure sensors mounted on the handle. An algorithm was developed to compute the push force applied to the handle of an electric pistol-grip nutrunner based on recorded pressure measurements. An optimization problem was solved to find the contribution of each measured pressure to the actual pushing force of the tool. Finally, the grip force was determined from the difference between the measured pressure and the calculated pushing pressure. RESULTS: The grip force and push force were successfully isolated and there was no correlation between the two forces. The computed grip force increased from low to high fastener locations, whereas the push force significantly increased during overhead fastening. A significant difference across the participants' computed grip forces was observed. The grip force distribution showed that its contribution to total hand force was larger than other definitions in the literature. CONCLUSIONS: The developed algorithm can aid in better understanding the risk of injury associated with different tasks through the notion of grip and push force distribution. This was shown to be important as even workers with considerable power tool experience applied significantly more grip and push force than other participants, all of whom successfully completed each task. Moreover, the fact that both forces were uncorrelated shows the need for extracting them independently.


Subject(s)
Hand Strength , Hand , Humans , Industry , Posture , Upper Extremity
9.
IEEE J Biomed Health Inform ; 25(7): 2510-2520, 2021 07.
Article in English | MEDLINE | ID: mdl-33497346

ABSTRACT

The objective is to develop a cuffless method that accurately estimates blood pressure (BP) during activities of daily living. User-specific nonlinear autoregressive models with exogenous inputs (NARX) are implemented using artificial neural networks to estimate the BP waveforms from electrocardiography and photoplethysmography signals. To broaden the range of BP in the training data, subjects followed a short procedure consisting of sitting, standing, walking, Valsalva maneuvers, and static handgrip exercises. The procedure was performed before and after a six-hour testing phase wherein five participants went about their normal daily living activities. Data were further collected at a four-month time point for two participants and again at six months for one of the two. The performance of three different NARX models was compared with three pulse arrival time (PAT) models. The NARX models demonstrate superior accuracy and correlation with "ground truth" systolic and diastolic BP measures compared to the PAT models and a clear advantage in estimating the large range of BP. Preliminary results show that the NARX models can accurately estimate BP even months apart from the training. Preliminary testing suggests that it is robust against variabilities due to sensor placement. This establishes a method for cuffless BP estimation during activities of daily living that can be used for continuous monitoring and acute hypotension and hypertension detection.


Subject(s)
Activities of Daily Living , Wearable Electronic Devices , Blood Pressure , Blood Pressure Determination , Hand Strength , Humans , Photoplethysmography , Pulse Wave Analysis
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4441-4445, 2020 07.
Article in English | MEDLINE | ID: mdl-33018980

ABSTRACT

This work presents a modelling approach to predict the blood pressure (BP) waveform time series during activities of daily living without the use of a traditional pressure cuff. A nonlinear autoregressive model with exogenous inputs (NARX) is implemented using artificial neural networks and trained to predict the BP waveform time series from electrocardiography (ECG) and forehead photoplethysmography (PPG) input signals. To broaden the range of blood pressures present in the training set, a protocol was implemented that included sitting, standing, walking, Valsalva manoeuvers, and static handgrip exercise. A five-minute interval of data in the sitting position at the end of the day was also used for training. The efficacy of the cuffless BP method for continuous BP estimation over 4.67 hours was evaluated on 3 participants for varying training data segments. A mean absolute error of 6.3 and 5.2 mmHg were achieved for systolic BP and diastolic BP estimates, respectively. Including static handgrips and Valsalva manoeuvers in the training dataset leads to better estimation of the higher ranges of BP observed throughout the day. The proposed method shows potential for estimating the range of BP experienced during activities of daily living.Clinical Relevance- Establishes a method for cuffless continuous blood pressure estimation during activities of daily living that can be used for continuous monitoring and acute hypertension detection.


Subject(s)
Activities of Daily Living , Hand Strength , Blood Pressure , Blood Pressure Determination , Humans , Pulse Wave Analysis
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 7060-7063, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947463

ABSTRACT

This work presents a modelling approach to accurately predict the blood pressure (BP) waveform time series from a single input signal. A nonlinear autoregressive model with exogenous input (NARX) is implemented using artificial neural networks and trained on Electrocardiography (ECG) signals to predict the BP waveform. The efficacy of the model is demonstrated using the MIMIC II database. The proposed method can accurately estimate systolic and diastolic BP. The NARX model together with ECG measurement allows continuous monitoring of BP, enables the estimation of other physiological measurements, such as the cardiac output, and provides more insight on the patient health condition.


Subject(s)
Blood Pressure Determination , Electrocardiography , Blood Pressure , Humans , Neural Networks, Computer , Nonlinear Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...