Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Front Immunol ; 13: 894534, 2022.
Article in English | MEDLINE | ID: mdl-35634338

ABSTRACT

Secondary bacterial infections can exacerbate SARS-CoV-2 infection, but their prevalence and impact remain poorly understood. Here, we established that a mild to moderate infection with the SARS-CoV-2 USA-WA1/2020 strain increased the risk of pneumococcal (type 2 strain D39) coinfection in a time-dependent, but sex-independent, manner in the transgenic K18-hACE2 mouse model of COVID-19. Bacterial coinfection increased lethality when the bacteria was initiated at 5 or 7 d post-virus infection (pvi) but not at 3 d pvi. Bacterial outgrowth was accompanied by neutrophilia in the groups coinfected at 7 d pvi and reductions in B cells, T cells, IL-6, IL-15, IL-18, and LIF were present in groups coinfected at 5 d pvi. However, viral burden, lung pathology, cytokines, chemokines, and immune cell activation were largely unchanged after bacterial coinfection. Examining surviving animals more than a week after infection resolution suggested that immune cell activation remained high and was exacerbated in the lungs of coinfected animals compared with SARS-CoV-2 infection alone. These data suggest that SARS-CoV-2 increases susceptibility and pathogenicity to bacterial coinfection, and further studies are needed to understand and combat disease associated with bacterial pneumonia in COVID-19 patients.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Animals , Bacteria , Humans , Mice , Mice, Transgenic , SARS-CoV-2
3.
bioRxiv ; 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35262077

ABSTRACT

Secondary bacterial infections can exacerbate SARS-CoV-2 infection, but their prevalence and impact remain poorly understood. Here, we established that a mild to moderate SARS-CoV-2 infection increased the risk of pneumococcal coinfection in a time-dependent, but sexindependent, manner in the transgenic K18-hACE mouse model of COVID-19. Bacterial coinfection was not established at 3 d post-virus, but increased lethality was observed when the bacteria was initiated at 5 or 7 d post-virus infection (pvi). Bacterial outgrowth was accompanied by neutrophilia in the groups coinfected at 7 d pvi and reductions in B cells, T cells, IL-6, IL-15, IL-18, and LIF were present in groups coinfected at 5 d pvi. However, viral burden, lung pathology, cytokines, chemokines, and immune cell activation were largely unchanged after bacterial coinfection. Examining surviving animals more than a week after infection resolution suggested that immune cell activation remained high and was exacerbated in the lungs of coinfected animals compared with SARS-CoV-2 infection alone. These data suggest that SARS-CoV-2 increases susceptibility and pathogenicity to bacterial coinfection, and further studies are needed to understand and combat disease associated with bacterial pneumonia in COVID-19 patients.

4.
FEMS Microbes ; 3: xtac022, 2022.
Article in English | MEDLINE | ID: mdl-37332507

ABSTRACT

Secondary bacterial infections increase influenza-related morbidity and mortality, particularly if acquired after 5-7 d from the viral onset. Synergistic host responses and direct pathogen-pathogen interactions are thought to lead to a state of hyperinflammation, but the kinetics of the lung pathology have not yet been detailed, and identifying the contribution of different mechanisms to disease is difficult because these may change over time. To address this gap, we examined host-pathogen and lung pathology dynamics following a secondary bacterial infection initiated at different time points after influenza within a murine model. We then used a mathematical approach to quantify the increased virus dissemination in the lung, coinfection time-dependent bacterial kinetics, and virus-mediated and postbacterial depletion of alveolar macrophages. The data showed that viral loads increase regardless of coinfection timing, which our mathematical model predicted and histomorphometry data confirmed was due to a robust increase in the number of infected cells. Bacterial loads were dependent on the time of coinfection and corresponded to the level of IAV-induced alveolar macrophage depletion. Our mathematical model suggested that the additional depletion of these cells following the bacterial invasion was mediated primarily by the virus. Contrary to current belief, inflammation was not enhanced and did not correlate with neutrophilia. The enhanced disease severity was correlated to inflammation, but this was due to a nonlinearity in this correlation. This study highlights the importance of dissecting nonlinearities during complex infections and demonstrated the increased dissemination of virus within the lung during bacterial coinfection and simultaneous modulation of immune responses during influenza-associated bacterial pneumonia.

5.
PLoS Comput Biol ; 17(10): e1009480, 2021 10.
Article in English | MEDLINE | ID: mdl-34662338

ABSTRACT

The endpoint dilution assay's output, the 50% infectious dose (ID50), is calculated using the Reed-Muench or Spearman-Kärber mathematical approximations, which are biased and often miscalculated. We introduce a replacement for the ID50 that we call Specific INfection (SIN) along with a free and open-source web-application, midSIN (https://midsin.physics.ryerson.ca) to calculate it. midSIN computes a virus sample's SIN concentration using Bayesian inference based on the results of a standard endpoint dilution assay, and requires no changes to current experimental protocols. We analyzed influenza and respiratory syncytial virus samples using midSIN and demonstrated that the SIN/mL reliably corresponds to the number of infections a sample will cause per mL. It can therefore be used directly to achieve a desired multiplicity of infection, similarly to how plaque or focus forming units (PFU, FFU) are used. midSIN's estimates are shown to be more accurate and robust than the Reed-Muench and Spearman-Kärber approximations. The impact of endpoint dilution plate design choices (dilution factor, replicates per dilution) on measurement accuracy is also explored. The simplicity of SIN as a measure and the greater accuracy provided by midSIN make them an easy and superior replacement for the TCID50 and other in vitro culture ID50 measures. We hope to see their universal adoption to measure the infectivity of virus samples.


Subject(s)
Biological Assay/methods , Computational Biology/methods , Viral Plaque Assay/methods , Virus Diseases/virology , Bayes Theorem
6.
Elife ; 102021 07 20.
Article in English | MEDLINE | ID: mdl-34282728

ABSTRACT

Influenza viruses cause a significant amount of morbidity and mortality. Understanding host immune control efficacy and how different factors influence lung injury and disease severity are critical. We established and validated dynamical connections between viral loads, infected cells, CD8+ T cells, lung injury, inflammation, and disease severity using an integrative mathematical model-experiment exchange. Our results showed that the dynamics of inflammation and virus-inflicted lung injury are distinct and nonlinearly related to disease severity, and that these two pathologic measurements can be independently predicted using the model-derived infected cell dynamics. Our findings further indicated that the relative CD8+ T cell dynamics paralleled the percent of the lung that had resolved with the rate of CD8+ T cell-mediated clearance rapidly accelerating by over 48,000 times in 2 days. This complimented our analyses showing a negative correlation between the efficacy of innate and adaptive immune-mediated infected cell clearance, and that infection duration was driven by CD8+ T cell magnitude rather than efficacy and could be significantly prolonged if the ratio of CD8+ T cells to infected cells was sufficiently low. These links between important pathogen kinetics and host pathology enhance our ability to forecast disease progression, potential complications, and therapeutic efficacy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Inflammation/pathology , Influenza A Virus, H1N1 Subtype/immunology , Lung/pathology , Orthomyxoviridae Infections/virology , Animals , Female , Kinetics , Linear Models , Mice , Mice, Inbred BALB C , Severity of Illness Index , Viral Load
7.
Infect Immun ; 89(7): e0002321, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33875471

ABSTRACT

Streptococcus pneumoniae (pneumococcus) is one of the primary bacterial pathogens that complicates influenza virus infections. These bacterial coinfections increase influenza-associated morbidity and mortality through a number of immunological and viral-mediated mechanisms, but the specific bacterial genes that contribute to postinfluenza pathogenicity are not known. Here, we used genome-wide transposon mutagenesis (Tn-Seq) to reveal bacterial genes that confer improved fitness in influenza virus-infected hosts. The majority of the 32 genes identified are involved in bacterial metabolism, including nucleotide biosynthesis, amino acid biosynthesis, protein translation, and membrane transport. We generated mutants with single-gene deletions (SGD) of five of the genes identified, SPD1414, SPD2047 (cbiO1), SPD0058 (purD), SPD1098, and SPD0822 (proB), to investigate their effects on in vivo fitness, disease severity, and host immune responses. The growth of the SGD mutants was slightly attenuated in vitro and in vivo, but each still grew to high titers in the lungs of mock- and influenza virus-infected hosts. Despite high bacterial loads, mortality was significantly reduced or delayed with all SGD mutants. Time-dependent reductions in pulmonary neutrophils, inflammatory macrophages, and select proinflammatory cytokines and chemokines were also observed. Immunohistochemical staining further revealed altered neutrophil distribution with reduced degeneration in the lungs of influenza virus-SGD mutant-coinfected animals. These studies demonstrate a critical role for specific bacterial genes and for bacterial metabolism in driving virulence and modulating immune function during influenza-associated bacterial pneumonia.


Subject(s)
Coinfection , Genetic Fitness , Host-Pathogen Interactions , Influenza A virus , Influenza, Human/virology , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/physiology , Bacterial Proteins/genetics , Cytokines/metabolism , Host-Pathogen Interactions/immunology , Humans , Inflammation Mediators , Influenza A virus/immunology , Leukocytes/immunology , Leukocytes/metabolism , Mutation , Pneumococcal Infections/immunology , Pneumococcal Infections/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...