Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(7)2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37050744

ABSTRACT

Monitoring the tortoise Chelonoidis chilensis in the wild, currently in a vulnerable state of conservation in southern Argentina, is essential to gather movement information to elaborate guidelines for the species preservation. We present here the electronic circuit design as well as the associated firmware for animal monitoring that was entirely designed by our interdisciplinary research team to allow the extension of device features in the future. Our development stands out for being a family of low-cost and low-power devices, that could be easily adaptable to other species and contexts. Each device is composed of a sub 1 GHz radiofrequency IoT-compatible transceiver, a global navigation satellite system (GNSS) receiver, a magnetometer, and temperature and inertial sensors. The device does not exceed 5% of the animal's weight to avoid disturbance in their behavior. The board was designed to work as a monitoring device as well as a collecting data station and a tracker, by adding only small pieces of hardware. We performed field measurements to assess the autonomy and range of the radiofrequency link, as well as the power consumption and the associated positioning error. We report those values and discuss the device's limitations and advantages. The weight of the PCB including battery and GNSS receiver is 44.9 g, its dimensions are 48.7 mm × 63.7 mm, and it has an autonomy that can vary between a week and a month, depending on the sampling rates of the sensors and the rate of the RF signal and that of the GNSS receiver. The characterization of the device parameters will favor the open use of this development by other research groups working on similar projects.


Subject(s)
Electric Power Supplies , Movement , Animals , Electronics , Radio Waves , Temperature
2.
Infect Dis Model ; 7(4): 823-834, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36474869

ABSTRACT

In the last two decades dengue cases increased significantly throughout the world, giving place to more frequent outbreaks in Latin America. In the non-endemic city of San Ramón de la Nueva Orán, located in Northwest Argentina, large dengue outbreaks alternate with several years of smaller ones. This pattern, as well as the understanding of the underlying mechanisms, could be essential to design proper strategies to reduce epidemic size. We develop a stochastic model that includes climate variables, social structure, and mobility between a non-endemic city and an endemic area. Climatic variables were input of a mosquito population ecological model, which in turn was coupled to a meta-population, spatially explicit, epidemiological model. Human mobility was included into the model given the high border crossing to the northern country of Bolivia, where dengue transmission is sustained during the whole year. We tested different hypotheses regarding people mobility as well as climate variability by fitting numerical simulations to weekly clinical data reported from 2009 to 2016. After assessing the number of imported cases that triggered the observed outbreaks, our model allows to explain the observed epidemic pattern. We found that the number of vectors per host and the effective reproductive number are proxies for large epidemics. Both proxies are related with climate variability such as rainfall and temperature, opening the possibility to test these meteorological variables for forecast purposes.

3.
Phys Rev E ; 106(3-1): 034405, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36266790

ABSTRACT

Some mosquitoes are vectors for disease transmission to human populations. Aedes aegypti, the main vector for dengue in Argentina, mainly breeds in artificial containers as it is strongly adapted to urban environments. This highlights the relevance of understanding human social behavior to design successful vector control campaigns. We developed a model of mosquito populations that considers their main biological and behavioral features and incorporates parameters that model human behavior in relation to water container disposal. We performed extensive numerical simulations to study the variability of adult and aquatic mosquito populations when various protocols are applied, changing the effectiveness and frequency of water bucket disposal and the delay in the availability of water containers for breeding. We found an effectiveness threshold value above which it is possible to significantly limit mosquito dispersal. Interestingly, a nonsynchronized discard frequency, more attainable by human populations, was more efficient than a synchronized one to reduce the aquatic mosquito population. Scenarios with random delays in the availability of water containers indicate that it is not decisive to have a fixed time delay for the entire population, which is more realistic as it mimics a wider range of human behaviors. This simple model could help design dengue prevention campaigns aiming at mosquito population control.


Subject(s)
Aedes , Dengue , Humans , Animals , Mosquito Vectors , Pupa , Larva , Water , Dengue/epidemiology , Dengue/prevention & control , Social Behavior
4.
PLoS Negl Trop Dis ; 15(6): e0009465, 2021 06.
Article in English | MEDLINE | ID: mdl-34115753

ABSTRACT

Dengue is steadily increasing worldwide and expanding into higher latitudes. Current non-endemic areas are prone to become endemic soon. To improve understanding of dengue transmission in these settings, we assessed the spatiotemporal dynamics of the hitherto largest outbreak in the non-endemic metropolis of Buenos Aires, Argentina, based on detailed information on the 5,104 georeferenced cases registered during summer-autumn of 2016. The highly seasonal dengue transmission in Buenos Aires was modulated by temperature and triggered by imported cases coming from regions with ongoing outbreaks. However, local transmission was made possible and consolidated heterogeneously in the city due to housing and socioeconomic characteristics of the population, with 32.8% of autochthonous cases occurring in slums, which held only 6.4% of the city population. A hierarchical spatiotemporal model accounting for imperfect detection of cases showed that, outside slums, less-affluent neighborhoods of houses (vs. apartments) favored transmission. Global and local spatiotemporal point-pattern analyses demonstrated that most transmission occurred at or close to home. Additionally, based on these results, a point-pattern analysis was assessed for early identification of transmission foci during the outbreak while accounting for population spatial distribution. Altogether, our results reveal how social, physical, and biological processes shape dengue transmission in Buenos Aires and, likely, other non-endemic cities, and suggest multiple opportunities for control interventions.


Subject(s)
Dengue/epidemiology , Dengue/transmission , Animals , Argentina/epidemiology , Cities/statistics & numerical data , Dengue/economics , Dengue/virology , Disease Outbreaks , Housing , Humans , Poverty Areas , Seasons , Temperature , Travel
5.
PLoS One ; 14(7): e0219249, 2019.
Article in English | MEDLINE | ID: mdl-31291316

ABSTRACT

In this work we analyze potential environmental drivers of malaria cases in Northwestern Argentina. We inspect causal links between malaria and climatic variables by means of the convergent cross mapping technique, which provides a causality criterion from the theory of dynamic systems. Analysis is based on 12 years of weekly malaria P. vivax cases in Tartagal, Salta, Argentina-at the southern fringe of malaria incidence in the Americas-together with humidity and temperature time-series spanning the same period. Our results show that there are causal links between malaria cases and both maximum temperature, with a delay of five weeks, and minimum temperature, with delays of zero and twenty two weeks. Humidity is also a driver of malaria cases, with thirteen weeks delay between cause and effect. Furthermore we also determined the sign and strength of the effects. Temperature has always a positive non-linear effect on cases, with maximum temperature effects more pronounced above 25°C and minimum above 17°C, while effects of humidity are more intricate: maximum humidity above 85% has a negative effect, whereas minimum humidity has a positive effect on cases. These results might be signaling processes operating at short (below 5 weeks) and long (over 12 weeks) time delays, corresponding to effects related to parasite cycle and mosquito population dynamics respectively. The non-linearities found for the strength of the effect of temperature on malaria cases make warmer areas more prone to higher increases in the disease incidence. Moreover, our results indicate that an increase of extreme weather events could enhance the risks of malaria spreading and re-emergence beyond the current distribution. Both situations, warmer climate and increase of extreme events, will be remarkably increased by the end of the century in this hot spot of climate change.


Subject(s)
Climate Change , Culicidae/pathogenicity , Malaria, Vivax/epidemiology , Animals , Argentina/epidemiology , Culicidae/physiology , Humans , Humidity , Malaria, Vivax/parasitology , Temperature
6.
Proc Natl Acad Sci U S A ; 112(28): 8786-91, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26124134

ABSTRACT

Assessing the influence of climate on the incidence of Plasmodium falciparum malaria worldwide and how it might impact local malaria dynamics is complex and extrapolation to other settings or future times is controversial. This is especially true in the light of the particularities of the short- and long-term immune responses to infection. In sites of epidemic malaria transmission, it is widely accepted that climate plays an important role in driving malaria outbreaks. However, little is known about the role of climate in endemic settings where clinical immunity develops early in life. To disentangle these differences among high- and low-transmission settings we applied a dynamical model to two unique adjacent cohorts of mesoendemic seasonal and holoendemic perennial malaria transmission in Senegal followed for two decades, recording daily P. falciparum cases. As both cohorts are subject to similar meteorological conditions, we were able to analyze the relevance of different immunological mechanisms compared with climatic forcing in malaria transmission. Transmission was first modeled by using similarly unique datasets of entomological inoculation rate. A stochastic nonlinear human-mosquito model that includes rainfall and temperature covariates, drug treatment periods, and population variability is capable of simulating the complete dynamics of reported malaria cases for both villages. We found that under moderate transmission intensity climate is crucial; however, under high endemicity the development of clinical immunity buffers any effect of climate. Our models open the possibility of forecasting malaria from climate in endemic regions but only after accounting for the interaction between climate and immunity.


Subject(s)
Climate , Malaria, Falciparum/epidemiology , Models, Theoretical , Humans , Incidence , Malaria, Falciparum/transmission
7.
Theor Ecol ; 4: 211-222, 2011.
Article in English | MEDLINE | ID: mdl-25540675

ABSTRACT

Simple temporal models that ignore the spatial nature of interactions and track only changes in mean quantities, such as global densities, are typically used under the unrealistic assumption that individuals are well mixed. These so-called mean-field models are often considered overly simplified, given the ample evidence for distributed interactions and spatial heterogeneity over broad ranges of scales. Here, we present one reason why such simple population models may work even when mass-action assumptions do not hold: spatial structure is present but it relates to global densities in a special way. With an individual-based predator-prey model that is spatial and stochastic, and whose mean-field counterpart is the classic Lotka-Volterra model, we show that the global densities and densities of pairs (or spatial covariances) establish a bi-power law at the stationary state and also in their transient approach to this state. This relationship implies that the dynamics of global densities can be written simply as a function of those densities alone without invoking pairs (or higher order moments). The exponents of the bi-power law for the predation rate exhibit a remarkable robustness to changes in model parameters. Evidence is presented for a connection of our findings to the existence of a critical phase transition in the dynamics of the spatial system. We discuss the application of similar modified mean-field equations to other ecological systems for which similar transitions have been described, both in models and empirical data.Electronic supplementary material The online version of this article (doi:10.1007/s12080-011-0116-2) contains supplementary material, which is available to authorized users.

8.
PLoS Comput Biol ; 6(9): e1000898, 2010 Sep 02.
Article in English | MEDLINE | ID: mdl-20824122

ABSTRACT

Malaria epidemics in regions with seasonal windows of transmission can vary greatly in size from year to year. A central question has been whether these interannual cycles are driven by climate, are instead generated by the intrinsic dynamics of the disease, or result from the resonance of these two mechanisms. This corresponds to the more general inverse problem of identifying the respective roles of external forcings vs. internal feedbacks from time series for nonlinear and noisy systems. We propose here a quantitative approach to formally compare rival hypotheses on climate vs. disease dynamics, or external forcings vs. internal feedbacks, that combines dynamical models with recently developed, computational inference methods. The interannual patterns of epidemic malaria are investigated here for desert regions of northwest India, with extensive epidemiological records for Plasmodium falciparum malaria for the past two decades. We formulate a dynamical model of malaria transmission that explicitly incorporates rainfall, and we rely on recent advances on parameter estimation for nonlinear and stochastic dynamical systems based on sequential Monte Carlo methods. Results show a significant effect of rainfall in the inter-annual variability of epidemic malaria that involves a threshold in the disease response. The model exhibits high prediction skill for yearly cases in the malaria transmission season following the monsoonal rains. Consideration of a more complex model with clinical immunity demonstrates the robustness of the findings and suggests a role of infected individuals that lack clinical symptoms as a reservoir for transmission. Our results indicate that the nonlinear dynamics of the disease itself play a role at the seasonal, but not the interannual, time scales. They illustrate the feasibility of forecasting malaria epidemics in desert and semi-arid regions of India based on climate variability. This approach should be applicable to malaria in other locations, to other infectious diseases, and to other nonlinear systems under forcing.


Subject(s)
Epidemics , Malaria, Falciparum/epidemiology , Models, Biological , Plasmodium falciparum/growth & development , Rain , Animals , Computer Simulation , Culicidae , Databases, Factual , Feedback, Physiological , Host-Parasite Interactions , Humans , India/epidemiology , Insect Vectors , Malaria, Falciparum/transmission , Models, Statistical , Seasons , Systems Biology/methods
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(6 Pt 2): 065105, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16485999

ABSTRACT

A dynamic scaling ansatz for the approach to the self-organized critical (SOC) regime is proposed and tested by means of extensive simulations applied to the Bak-Sneppen model (BS), which exhibits robust SOC behavior. Considering the short-time scaling behavior of the density of sites [rho(t)] below the critical value, it is shown that (i) starting the dynamics with configurations such that rho(t=0)-->0 one observes an initial increase of the density with exponent theta=0.12(2); (ii) using initial configurations with rho(t=0)-->1, the density decays with exponent delta=0.47(2). It is also shown that the temporal autocorrelation decays with exponent Ca=0.35(2). Using these dynamically determined critical exponents and suitable scaling relationships, all known exponents of the BS model can be obtained, e.g., the dynamical exponent z=2.10(5), the mass dimension exponent D=2.42(5), and the exponent of all returns of the activity tauALL=0.39(2), in excellent agreement with values already accepted and obtained within the SOC regime.

SELECTION OF CITATIONS
SEARCH DETAIL
...