Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
1.
Neoplasia ; 54: 101008, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823209

ABSTRACT

Successful treatment of glioblastoma multiforme (GBM), an aggressive form of primary brain neoplasm, mandates the need to develop new therapeutic strategies. In this study, we investigated the potential of PBI-05204 in targeting GBM stem cells (GSCs) and the underlying mechanisms. Treatment with PBI-05204 significantly reduced both the number and size of tumor spheres derived from patient-derived GSCs (GBM9, GSC28 and TS543), and suppressed the tumorigenesis of GBM9 xenografts. Moreover, PBI-05204 treatment led to a significant decrease in the expression of CD44 and NANOG, crucial markers of progenitor stem cells, in GBM9 and GSC28 GSCs. This treatment also down-regulated GRP78 expression in both GSC types. Knocking down GRP78 expression through GRP78 siRNA transfection in GBM9 and GSC28 GSCs also resulted in reduced spheroid size and CD44 expression. Combining PBI-05204 with GRP78 siRNA further decreased spheroid numbers compared to GRP78 siRNA treatment alone. PBI-05204 treatment led to increased expression of pRIP1K and pRIP3K, along with enhanced binding of RIPK1/RIPK3 in GBM9 and GSC28 cells, resembling the effects observed in GRP78-silenced GSCs, suggesting that PBI-05204 induced necroptosis in these cells. Furthermore, oleandrin, a principle active cardiac glycoside component of PBI-05204, showed the ability to inhibit the self-renewal capacity in GSCs. These findings highlight the potential of PBI-05204 as a promising candidate for the development of novel therapies that target GBM stem cells.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Glioblastoma , Heat-Shock Proteins , Neoplastic Stem Cells , Xenograft Model Antitumor Assays , Humans , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/genetics , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Mice , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Cell Line, Tumor , Plant Extracts/pharmacology , Necroptosis/drug effects , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Cell Proliferation/drug effects , Apoptosis/drug effects , Disease Models, Animal , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics
2.
Nat Commun ; 15(1): 3728, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697991

ABSTRACT

With improvements in survival for patients with metastatic cancer, long-term local control of brain metastases has become an increasingly important clinical priority. While consensus guidelines recommend surgery followed by stereotactic radiosurgery (SRS) for lesions >3 cm, smaller lesions (≤3 cm) treated with SRS alone elicit variable responses. To determine factors influencing this variable response to SRS, we analyzed outcomes of brain metastases ≤3 cm diameter in patients with no prior systemic therapy treated with frame-based single-fraction SRS. Following SRS, 259 out of 1733 (15%) treated lesions demonstrated MRI findings concerning for local treatment failure (LTF), of which 202 /1733 (12%) demonstrated LTF and 54/1733 (3%) had an adverse radiation effect. Multivariate analysis demonstrated tumor size (>1.5 cm) and melanoma histology were associated with higher LTF rates. Our results demonstrate that brain metastases ≤3 cm are not uniformly responsive to SRS and suggest that prospective studies to evaluate the effect of SRS alone or in combination with surgery on brain metastases ≤3 cm matched by tumor size and histology are warranted. These studies will help establish multi-disciplinary treatment guidelines that improve local control while minimizing radiation necrosis during treatment of brain metastasis ≤3 cm.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Radiosurgery , Radiosurgery/methods , Humans , Brain Neoplasms/secondary , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Male , Female , Middle Aged , Aged , Melanoma/pathology , Adult , Treatment Outcome , Tumor Burden , Aged, 80 and over , Treatment Failure , Retrospective Studies
3.
J Cell Physiol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775127

ABSTRACT

Primary, glioblastoma, and secondary brain tumors, from metastases outside the brain, are among the most aggressive and therapeutically resistant cancers. A physiological barrier protecting the brain, the blood-brain barrier (BBB), functions as a deterrent to effective therapies. To enhance cancer therapy, we developed a cancer terminator virus (CTV), a unique tropism-modified adenovirus consisting of serotype 3 fiber knob on an otherwise Ad5 capsid that replicates in a cancer-selective manner and simultaneously produces a potent therapeutic cytokine, melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24). A limitation of the CTV and most other viruses, including adenoviruses, is an inability to deliver systemically to treat brain tumors because of the BBB, nonspecific virus trapping, and immune clearance. These obstacles to effective viral therapy of brain cancer have now been overcome using focused ultrasound with a dual microbubble treatment, the focused ultrasound-double microbubble (FUS-DMB) approach. Proof-of-principle is now provided indicating that the BBB can be safely and transiently opened, and the CTV can then be administered in a second set of complement-treated microbubbles and released in the brain using focused ultrasound. Moreover, the FUS-DMB can be used to deliver the CTV multiple times in animals with glioblastoma  growing in their brain thereby resulting in a further enhancement in survival. This strategy permits efficient therapy of primary and secondary brain tumors enhancing animal survival without promoting harmful toxic or behavioral side effects. Additionally, when combined with a standard of care therapy, Temozolomide, a further increase in survival is achieved. The FUS-DMB approach with the CTV highlights a noninvasive strategy to treat brain cancers without surgery. This innovative delivery scheme combined with the therapeutic efficacy of the CTV provides a novel potential translational therapeutic approach for brain cancers.

4.
J Vis Exp ; (205)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38557500

ABSTRACT

Given recent advances in the delivery of novel antitumor therapeutics using endovascular selective intraarterial delivery methods in neuro-oncology, there is an urgent need to develop methods for intracarotid injections in mouse models, including methods to repair the carotid artery in mice after injection to allow for subsequent injections. We developed a method of intracarotid injection in a mouse model to deliver therapeutics into the internal carotid artery (ICA) with two alternative procedures. During injection, the needle is inserted into the common carotid artery (CCA) after tying a suture around the external carotid artery (ECA) and injected therapeutics are delivered into the ICA. Following injection, the common carotid artery (CCA) can be ligated, which limits the number of intracarotid injections to one. The alternative procedure described in this article includes a modification where intracarotid artery injection is followed by injection site repair of the CCA, which restores blood flow within the CCA and avoids the complication of cerebral ischemia seen in some mouse models. We also compared the delivery of bone marrow-derived human mesenchymal stem cells (BM-hMSCs) to intracranial tumors when delivered through intracarotid injection with and without injection site repair following the injection. Delivery of BM-hMSCs does not differ significantly between the methods. Our results demonstrate that injection site repair of the CCA allows for repeat injections through the same artery and does not impair the delivery and distribution of injected material, thus providing a model with greater flexibility that more closely emulates intracarotid injection in humans.


Subject(s)
Brain Ischemia , Brain Neoplasms , Humans , Mice , Animals , Carotid Artery, Internal/surgery , Carotid Artery, Common , Carotid Arteries , Carotid Artery, External
5.
J Cardiol Cases ; 29(4): 178-181, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38646084

ABSTRACT

Takotsubo cardiomyopathy (TCM) is characterized by transient left ventricular dysfunction with apical ballooning, usually observed in postmenopausal women after a stressful event. We discuss a rare presentation of TCM induced by thyrotoxicosis secondary to Graves' disease. This case raises interesting questions about the pathogenesis, diagnosis, and management of TCM. Learning objectives: 1. To recognize hyperthyroidism as a possible etiology of takutsubo cardiomyopathy.2. To identify the effect of radioiodine contrast on diagnosis of some types of takutsubo cardiomyopathy.

6.
Eur J Heart Fail ; 26(4): 938-947, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488292

ABSTRACT

AIMS: Despite their potential, sodium-glucose cotransporter 2 inhibitors (SGLT2i) have not been well-studied in transthyretin amyloid cardiomyopathy (ATTR-CM) as randomized trials have excluded patients with this morbid disease. We performed a retrospective study assessing the short-term efficacy and safety of SGLT2i in ATTR-CM. METHODS AND RESULTS: We screened consecutive patients seen at a tertiary care centre and identified 87 ATTR-CM patients treated with SGLT2i and 95 untreated control patients. Endpoints included changes in weight, loop diuretic dose, and cardiac/renal biomarkers. The median age of the overall population was 79 (interquartile range [IQR] 11) years. Nearly 90% of patients were male, and 93% were on a transthyretin stabilizer. Control patients demonstrated generally less severe disease at baseline compared to SGLT2i-treated patients, with lower median Columbia risk score (p < 0.001). Median follow-up time was 5.6 (IQR 5.2) and 8.4 (IQR 2.1) months in the SGLT2i and control cohorts, respectively. Compared with controls, SGLT2i treatment was associated with significantly greater reductions from baseline in weight, loop diuretic dose, and uric acid during follow-up (p < 0.001). While no significant between-group differences were observed on cardiac biomarkers, estimated glomerular filtration rate was significantly reduced versus controls 1 month after SGLT2i initiation (p = 0.002), but no significant differences were observed at later timepoints. Results were similar in a propensity score-matched analysis (n = 42 per cohort). A total of 10 (11.5%) patients discontinued SGLT2i, most commonly due to genitourinary symptoms. CONCLUSION: Sodium-glucose cotransporter 2 inhibitors were well tolerated by most patients with ATTR-CM and appeared to improve volume status and combat diuretic resistance. Randomized studies are needed to confirm these findings.


Subject(s)
Sodium-Glucose Transporter 2 Inhibitors , Humans , Male , Female , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Aged , Retrospective Studies , Treatment Outcome , Amyloid Neuropathies, Familial/drug therapy , Cardiomyopathies/drug therapy , Aged, 80 and over
7.
Neuropathology ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414131

ABSTRACT

Herein, we report a case of a collision tumor involving a multinodular and vacuolating neuronal tumor (MVNT) and a diffuse astrocytoma. A collision tumor between these two entities has not previously been reported. The patient is a 35-year-old woman who presented with new-onset hearing loss and ringing in her right ear. Magnetic resonance imaging identified a non-enhancing mass involving the gray matter and subcortical white matter of the left middle frontal gyrus. Additionally, tiny clustered nodules were noted along the underlying subcortical ribbon and superficial subcortical white matter of the left superior frontal gyrus. The patient underwent a left frontal craniotomy and complete resection of the mass. Histologic examination of the resected specimen demonstrated a collision tumor consisting of a diffuse astrocytoma (isocitrate dehydrogenase [IDH] mutant, central nervous system [CNS] World Health Organization [WHO] grade 2) and an MVNT, with the latter demonstrating characteristic morphologic and immunohistochemical features.

8.
Mol Ther ; 32(3): 722-733, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38311852

ABSTRACT

Oncolytic viruses are a promising treatment for patients with high-grade gliomas, but neutralizing antibodies can limit their efficacy in patients with prior virus exposure or upon repeated virus injections. Data from a previous clinical trial using the oncolytic adenovirus Delta-24-RGD showed that generation of anti-viral neutralizing antibodies may affect the long-term survival of glioma patients. Past studies have examined the effects of neutralizing antibodies during systemic virus injections, but largely overlooked their impact during local virus injections into the brain. We found that immunoglobulins colocalized with viral proteins upon local oncolytic virotherapy of brain tumors, warranting a strategy to prevent virus neutralization and maximize oncolysis. Thus, we generated a chimeric virus, Delta-24-RGD-H43m, by replacing the capsid protein HVRs from the serotype 5-based Delta-24-RGD with those from the rare serotype 43. Delta-24-RGD-H43m evaded neutralizing anti-Ad5 antibodies and conferred a higher rate of long-term survival than Delta-24-RGD in glioma-bearing mice. Importantly, Delta-24-RGD-H43m activity was significantly more resistant to neutralizing antibodies present in sera of glioma patients treated with Delta-24-RGD during a phase 1 clinical trial. These findings provide a framework for a novel treatment of glioma patients that have developed immunity against Delta-24-RGD.


Subject(s)
Brain Neoplasms , Glioma , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Animals , Mice , Adenoviridae/genetics , Antibodies, Neutralizing , Glioma/therapy , Glioma/pathology , Brain Neoplasms/pathology , Oncolytic Viruses/genetics , Antibodies, Viral , Oligopeptides/therapeutic use
9.
Neurooncol Adv ; 6(1): vdad165, 2024.
Article in English | MEDLINE | ID: mdl-38213834

ABSTRACT

Background: The most prevalent cancer treatments cause cell death through DNA damage. However, DNA damage response (DDR) repair pathways, initiated by tumor cells, can withstand the effects of anticancer drugs, providing justification for combining DDR inhibitors with DNA-damaging anticancer treatments. Methods: Cell viability assays were performed with CellTiter-Glo assay. DNA damage was evaluated using Western blotting analysis. RNA-seq and single-cell level expression were used to identify the DDR signatures. In vivo, studies were conducted in mice to determine the effect of ATris on TMZ sensitization. Results: We found a subpopulation of glioma sphere-forming cells (GSCs) with substantial synergism with temozolomide (TMZ) using a panel of 3 clinical-grade ataxia-telangiectasia- and Rad3-related kinase inhibitors (ATRis), (elimusertib, berzosertib, and ceralasertib). Interestingly, most synergistic cell lines had O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, indicating that ATRi mainly benefits tumors with no MGMT repair. Further, TMZ activated the ATR-checkpoint kinase 1 (Chk1) axis in an MGMT-dependent way. TMZ caused ATR-dependent Chk1 phosphorylation and DNA double-strand breaks as shown by increased γH2AX. Increased DNA damage and decreased Chk1 phosphorylation were observed upon the addition of ATRis to TMZ in MGMT-methylated (MGMT-) GSCs. TMZ also improved sensitivity to ATRis in vivo, as shown by increased mouse survival with the TMZ and ATRi combination treatment. Conclusions: This research provides a rationale for selectively targeting MGMT-methylated cells using ATRis and TMZ combination. Overall, we believe that MGMT methylation status in GBM could serve as a robust biomarker for patient selection for ATRi combined with TMZ.

10.
Expert Rev Med Devices ; 21(3): 197-206, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38214584

ABSTRACT

INTRODUCTION: Right heart failure (RHF) is a well-known complication after left ventricular assist device (LVAD) implantation and portends increased morbidity and mortality. Understanding the mechanisms and predictors of RHF in this clinical setting may offer ideas for early identification and aggressive management to minimize poor outcomes. A variety of medical therapies and mechanical circulatory support options are currently available for the management of post-LVAD RHF. AREAS COVERED: We reviewed the existing definitions of RHF including its potential mechanisms in the context of durable LVAD implantation and currently available medical and device therapies. We performed a literature search using PubMed (from 2010 to 2023). EXPERT OPINION: RHF remains a common complication after LVAD implantation. However, existing knowledge gaps limit clinicians' ability to adequately address its consequences. Early identification and management are crucial to reducing the risk of poor outcomes, but existing risk stratification tools perform poorly and have limited clinical applicability. This is an area ripe for investigation with the potential for major improvements in identification and targeted therapy in an effort to improve outcomes.


Subject(s)
Heart Failure , Heart-Assist Devices , Ventricular Dysfunction, Right , Humans , Heart-Assist Devices/adverse effects , Retrospective Studies , Heart Failure/etiology , Heart Failure/therapy , Risk Assessment , Echocardiography/adverse effects
11.
Neuro Oncol ; 26(5): 826-839, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38237157

ABSTRACT

BACKGROUND: Glioblastomas (GBMs) are central nervous system tumors that resist standard-of-care interventions and even immune checkpoint blockade. Myeloid cells in the tumor microenvironment can contribute to GBM progression; therefore, emerging immunotherapeutic approaches include reprogramming these cells to achieve desirable antitumor activity. Triggering receptor expressed on myeloid cells 2 (TREM2) is a myeloid signaling regulator that has been implicated in a variety of cancers and neurological diseases with contrasting functions, but its role in GBM immunopathology and progression is still under investigation. METHODS: Our reverse translational investigations leveraged single-cell RNA sequencing and cytometry of human gliomas to characterize TREM2 expression across myeloid subpopulations. Using 2 distinct murine glioma models, we examined the role of Trem2 on tumor progression and immune modulation of myeloid cells. Furthermore, we designed a method of tracking phagocytosis of glioma cells in vivo and employed in vitro assays to mechanistically understand the influence of TREM2 signaling on tumor uptake. RESULTS: We discovered that TREM2 expression does not correlate with immunosuppressive pathways, but rather showed strong a positive association with the canonical phagocytosis markers lysozyme (LYZ) and macrophage scavenger receptor (CD163) in gliomas. While Trem2 deficiency was found to be dispensable for gliomagenesis, Trem2+ myeloid cells display enhanced tumor uptake compared to Trem2- cells. Mechanistically, we demonstrate that TREM2 mediates phagocytosis via Syk signaling. CONCLUSIONS: These results indicate that TREM2 is not associated with immunosuppression in gliomas. Instead, TREM2 is an important regulator of phagocytosis that may be exploited as a potential therapeutic strategy for brain tumors.


Subject(s)
Brain Neoplasms , Glioblastoma , Membrane Glycoproteins , Phagocytosis , Receptors, Immunologic , Animals , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice , Humans , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Tumor Microenvironment , Myeloid Cells/metabolism , Mice, Inbred C57BL , Tumor Cells, Cultured , Signal Transduction
12.
J Neurosurg ; 141(1): 41-47, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38277647

ABSTRACT

The AANS/CNS Section on Tumors was founded 40 years ago in 1984 to assist in the education of neurosurgeons interested in neuro-oncology, and serves as a resource for other national organizations regarding the clinical treatment of nervous system tumors. The Section on Tumors was the first national physicians' professional organization dedicated to the study and treatment of patients with brain and spine tumors. Over the past 40 years, the Section on Tumors has built solid foundations, including establishing the tumor section satellite meetings, founding the Journal of Neuro-Oncology (the first medical journal dedicated to brain and spine surgical oncology), advancing surgical neuro-oncology education and research, promoting neurosurgical involvement in neuro-oncology clinical trials, and advocating for patients with brain and spine tumors. This review provides a synopsis of the Section on Tumors' history, its challenges, and its opportunities, drawing on the section's archives and input from the 17 section chairs who led it during its first 40 years.


Subject(s)
Brain Neoplasms , Societies, Medical , Spinal Neoplasms , Humans , Brain Neoplasms/therapy , Societies, Medical/history , History, 20th Century , Spinal Neoplasms/surgery , Spinal Neoplasms/therapy , History, 21st Century , Neurosurgery/history , United States , Medical Oncology/history
13.
Acta Neuropathol Commun ; 12(1): 13, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243318

ABSTRACT

Cerebrospinal fluid (CSF) analysis is underutilized in patients with glioblastoma (GBM), partly due to a lack of studies demonstrating the clinical utility of CSF biomarkers. While some studies show the utility of CSF cell-free DNA analysis, studies analyzing CSF metabolites in patients with glioblastoma are limited. Diffuse gliomas have altered cellular metabolism. For example, mutations in isocitrate dehydrogenase enzymes (e.g., IDH1 and IDH2) are common in diffuse gliomas and lead to increased levels of D-2-hydroxyglutarate in CSF. However, there is a poor understanding of changes CSF metabolites in GBM patients. In this study, we performed targeted metabolomic analysis of CSF from n = 31 patients with GBM and n = 13 individuals with non-neoplastic conditions (controls), by mass spectrometry. Hierarchical clustering and sparse partial least square-discriminant analysis (sPLS-DA) revealed differences in CSF metabolites between GBM and control CSF, including metabolites associated with fatty acid oxidation and the gut microbiome (i.e., carnitine, 2-methylbutyrylcarnitine, shikimate, aminobutanal, uridine, N-acetylputrescine, and farnesyl diphosphate). In addition, we identified differences in CSF metabolites in GBM patients based on the presence/absence of TP53 or PTEN mutations, consistent with the idea that different mutations have different effects on tumor metabolism. In summary, our results increase the understanding of CSF metabolites in patients with diffuse gliomas and highlight several metabolites that could be informative biomarkers in patients with GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Brain Neoplasms/pathology , Glioma/genetics , Mutation/genetics , Genomics , Biomarkers, Tumor/genetics , Isocitrate Dehydrogenase/genetics
14.
Neuro Oncol ; 26(1): 127-136, 2024 01 05.
Article in English | MEDLINE | ID: mdl-37603323

ABSTRACT

BACKGROUND: Endovascular selective intra-arterial (ESIA) infusion of cellular oncotherapeutics is a rapidly evolving strategy for treating glioblastoma. Evaluation of ESIA infusion requires a unique animal model. Our goal was to create a rabbit human GBM model to test IA infusions of cellular therapies and to test its usefulness by employing clinical-grade microcatheters and infusion methods to deliver mesenchymal stem cells loaded with an oncolytic adenovirus, Delta-24-RGD (MSC-D24). METHODS: Rabbits were immunosuppressed with mycophenolate mofetil, dexamethasone, and tacrolimus. They underwent stereotactic xenoimplantation of human GBM cell lines (U87, MDA-GSC-17, and MDA-GSC-8-11) into the right frontal lobe. Tumor formation was confirmed on magnetic resonance imaging, histologic, and immunohistochemistry analysis. Selective microcatheter infusion of MSC-D24 was performed via the ipsilateral internal carotid artery to assess model utility and the efficacy and safety of this approach. RESULTS: Twenty-five rabbits were implanted (18 with U87, 2 MDA-GSC-17, and 5 MDA-GSC-8-11). Tumors formed in 68% of rabbits (77.8% for U87, 50.0% for MDA-GSC-17, and 40.0% for MDA-GSC-8-11). On MRI, the tumors were hyperintense on T2-weighted image with variable enhancement (evidence of blood brain barrier breakdown). Histologically, tumors showed phenotypic traits of human GBM including varying levels of vascularity. ESIA infusion into the distal internal carotid artery of 2 ml of MSCs-D24 (107 cells) was safe in the model. Examination of post infusion specimens documented that MSCs-D24 homed to the implanted tumor at 24 hours. CONCLUSIONS: The intracranial immunosuppressed rabbit human GBM model allows testing of ESIA infusion of novel therapeutics (eg, MSC-D24) in a clinically relevant fashion.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Humans , Rabbits , Glioblastoma/pathology , Infusions, Intra-Arterial , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Cell Line, Tumor , Stem Cells/pathology
15.
Neuro Oncol ; 26(2): 236-250, 2024 02 02.
Article in English | MEDLINE | ID: mdl-37847405

ABSTRACT

BACKGROUND: Glioblastoma (GBM) has poor prognosis due to ineffective agents and poor delivery methods. MicroRNAs (miRs) have been explored as novel therapeutics for GBM, but the optimal miRs and the ideal delivery strategy remain unresolved. In this study, we sought to identify the most effective pan-subtype anti-GBM miRs and to develop an improved delivery system for these miRs. METHODS: We conducted an unbiased screen of over 600 miRs against 7 glioma stem cell (GSC) lines representing all GBM subtypes to identify a set of pan-subtype-specific anti-GBM miRs and then used available TCGA GBM patient outcomes and miR expression data to hone in on miRs that were most likely to be clinically effective. To enhance delivery and expression of the miRs, we generated a polycistronic plasmid encoding 3 miRs (pPolymiR) and used HEK293T cells as biofactories to package pPolymiR into engineered exosomes (eExos) that incorporate viral proteins (Gag/VSVg) in their structure (eExos+pPolymiR) to enhance function. RESULTS: Our stepwise screen identified miR-124-2, miR-135a-2, and let-7i as the most effective miRs across all GBM subtypes with clinical relevance. Delivery of eExos+pPolymiR resulted in high expression of all 3 miRs in GSCs, and significantly decreased GSC proliferation in vitro. eExos+pPolymiR prolonged survival of GSC-bearing mice in vivo when compared with eExos carrying each of the miRs individually or as a cocktail. CONCLUSION: eExos+pPolymiR, which includes a pan-subtype anti-glioma-specific miR combination encoded in a polycistronic plasmid and a novel exosome delivery platform, represents a new and potentially powerful anti-GBM therapeutic.


Subject(s)
Brain Neoplasms , Exosomes , Glioblastoma , Glioma , MicroRNAs , Humans , Animals , Mice , MicroRNAs/genetics , Glioblastoma/genetics , Glioblastoma/therapy , Glioblastoma/metabolism , Exosomes/genetics , Exosomes/metabolism , HEK293 Cells , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Glioma/genetics , Gene Expression Regulation, Neoplastic
16.
J Neurooncol ; 166(1): 39-49, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38160230

ABSTRACT

PURPOSE: Genomic alterations are fundamental for molecular-guided therapy in patients with breast and lung cancer. However, the turn-around time of standard next-generation sequencing assays is a limiting factor in the timely delivery of genomic information for clinical decision-making. METHODS: In this study, we evaluated genomic alterations in 54 cerebrospinal fluid samples from 33 patients with metastatic lung cancer and metastatic breast cancer to the brain using the Oncomine Precision Assay on the Genexus sequencer. There were nine patients with samples collected at multiple time points. RESULTS: Cell-free total nucleic acids (cfTNA) were extracted from CSF (0.1-11.2 ng/µl). Median base coverage was 31,963× with cfDNA input ranging from 2 to 20 ng. Mutations were detected in 30/54 CSF samples. Nineteen (19/24) samples with no mutations detected had suboptimal DNA input (< 20 ng). The EGFR exon-19 deletion and PIK3CA mutations were detected in two patients with increasing mutant allele fraction over time, highlighting the potential of CSF-cfTNA analysis for monitoring patients. Moreover, the EGFR T790M mutation was detected in one patient with prior EGFR inhibitor treatment. Additionally, ESR1 D538G and ESR1::CCDC170 alterations, associated with endocrine therapy resistance, were detected in 2 mBC patients. The average TAT from cfTNA-to-results was < 24 h. CONCLUSION: In summary, our results indicate that CSF-cfTNA analysis with the Genexus-OPA can provide clinically relevant information in patients with brain metastases with short TAT.


Subject(s)
Cell-Free Nucleic Acids , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Cell-Free Nucleic Acids/cerebrospinal fluid , Mutation , ErbB Receptors/genetics , Protein Kinase Inhibitors
17.
J Clin Neurosci ; 118: 147-152, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944358

ABSTRACT

BACKGROUND: There is a paucity of literature regarding the clinical characteristics and management of subependymomas of the fourth ventricle due to their rarity. Here, we describe the operative and non-operative management and outcomes of patients with such tumors. METHODS: This retrospective single-institution case series was gathered after Institutional Review Board (IRB) approval. Patients diagnosed with a subependymoma of the fourth ventricle between 1993 and 2021 were identified. Clinical, radiology and pathology reports along with magnetic resonance imaging (MRI) images were reviewed. RESULTS: Patients identified (n = 20), showed a male predominance (n = 14). They underwent surgery (n = 9) with resection and histopathological confirmation of subependymoma or were followed with imaging surveillance (n = 11). The median age at diagnosis was 51.5 years. Median tumor volume for the operative cohort was 8.64 cm3 and median length of follow-up was 65.8 months. Median tumor volume for the non-operative cohort was 0.96 cm3 and median length of follow-up was 78 months. No tumor recurrence post-resection was noted in the operative group, and no tumor growth from baseline was noted in the non-operative group. Most patients (89 %) in the operative group had symptoms at diagnosis, all of which improved post-resection. No patients were symptomatic in the non-operative group. CONCLUSIONS: Surgical resection is safe and is associated with alleviation of presenting symptoms in patients with large tumors. Observation and routine surveillance are warranted for smaller, asymptomatic tumors.


Subject(s)
Cerebral Ventricle Neoplasms , Glioma, Subependymal , Humans , Male , Middle Aged , Female , Glioma, Subependymal/diagnostic imaging , Glioma, Subependymal/surgery , Fourth Ventricle/diagnostic imaging , Fourth Ventricle/surgery , Fourth Ventricle/pathology , Retrospective Studies , Neoplasm Recurrence, Local , Magnetic Resonance Imaging , Cerebral Ventricle Neoplasms/diagnostic imaging , Cerebral Ventricle Neoplasms/surgery
18.
Cureus ; 15(8): e43719, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37724221

ABSTRACT

Lemierre syndrome is characterized by severe pharyngitis, internal jugular vein thrombosis, and septic emboli. We present a case of emphysematous osteomyelitis secondary to Lemierre syndrome in a 27-year-old previously healthy man. Despite the high mortality associated with these conditions, full symptom resolution can be achieved with early diagnosis and aggressive management.

19.
J Neurosci ; 43(47): 8043-8057, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37722850

ABSTRACT

The malignant brain cancer glioblastoma (GBM) contains groups of highly invasive cells that drive tumor progression as well as recurrence after surgery and chemotherapy. The molecular mechanisms that enable these GBM cells to exit the primary mass and disperse throughout the brain remain largely unknown. Here we report using human tumor specimens and primary spheroids from male and female patients that glial cell adhesion molecule (GlialCAM), which has normal roles in brain astrocytes and is mutated in the developmental brain disorder megalencephalic leukoencephalopathy with subcortical cysts (MLC), is differentially expressed in subpopulations of GBM cells. High levels of GlialCAM promote cell-cell adhesion and a proliferative GBM cell state in the tumor core. In contrast, GBM cells with low levels of GlialCAM display diminished proliferation and enhanced invasion into the surrounding brain parenchyma. RNAi-mediated inhibition of GlialCAM expression leads to activation of proinvasive extracellular matrix adhesion and signaling pathways. Profiling GlialCAM-regulated genes combined with cross-referencing to single-cell transcriptomic datasets validates functional links among GlialCAM, Mlc1, and aquaporin-4 in the invasive cell state. Collectively, these results reveal an important adhesion and signaling axis comprised of GlialCAM and associated proteins including Mlc1 and aquaporin-4 that is critical for control of GBM cell proliferation and invasion status in the brain cancer microenvironment.SIGNIFICANCE STATEMENT Glioblastoma (GBM) contains heterogeneous populations of cells that coordinately drive proliferation and invasion. We have discovered that glial cell adhesion molecule (GlialCAM)/hepatocyte cell adhesion molecule (HepaCAM) is highly expressed in proliferative GBM cells within the tumor core. In contrast, GBM cells with low levels of GlialCAM robustly invade into surrounding brain tissue along blood vessels and white matter. Quantitative RNA sequencing identifies various GlialCAM-regulated genes with functions in cell-cell adhesion and signaling. These data reveal that GlialCAM and associated signaling partners, including Mlc1 and aquaporin-4, are key factors that determine proliferative and invasive cell states in GBM.


Subject(s)
Aquaporins , Glioblastoma , Female , Humans , Male , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Cycle Proteins/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Membrane Proteins/metabolism , Tumor Microenvironment , Cell Proliferation , Neoplasm Invasiveness
20.
Nat Cancer ; 4(10): 1455-1473, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37653141

ABSTRACT

Glioblastoma (GBM) tumors are enriched in immune-suppressive myeloid cells and are refractory to immune checkpoint therapy (ICT). Targeting epigenetic pathways to reprogram the functional phenotype of immune-suppressive myeloid cells to overcome resistance to ICT remains unexplored. Single-cell and spatial transcriptomic analyses of human GBM tumors demonstrated high expression of an epigenetic enzyme-histone 3 lysine 27 demethylase (KDM6B)-in intratumoral immune-suppressive myeloid cell subsets. Importantly, myeloid cell-specific Kdm6b deletion enhanced proinflammatory pathways and improved survival in GBM tumor-bearing mice. Mechanistic studies showed that the absence of Kdm6b enhances antigen presentation, interferon response and phagocytosis in myeloid cells by inhibition of mediators of immune suppression including Mafb, Socs3 and Sirpa. Further, pharmacological inhibition of KDM6B mirrored the functional phenotype of Kdm6b-deleted myeloid cells and enhanced anti-PD1 efficacy. This study thus identified KDM6B as an epigenetic regulator of the functional phenotype of myeloid cell subsets and a potential therapeutic target for enhanced response to ICT.


Subject(s)
Glioblastoma , Humans , Mice , Animals , Glioblastoma/drug therapy , Glioblastoma/genetics , Histone Demethylases/genetics , Gene Expression Profiling , Phenotype , Jumonji Domain-Containing Histone Demethylases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...