Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Epidemiol Infect ; 146(11): 1372-1383, 2018 08.
Article in English | MEDLINE | ID: mdl-29909804

ABSTRACT

Previously we reported on the HPIV2 genotype distribution in Croatia 2011-2014. Here we expand this period up to 2017 and confirm that G1a genotype has replaced G3 genotype from the period 2011-2014. Our hypothesis was that the G1a-to-G3 genotype replacement is an antibody-driven event. A cross-neutralisation with anti-HPIV2 sera specific for either G1a or G3 genotype revealed the presence of genotype-specific antigenic determinants. By the profound, in silico analyses three potential B cell epitopic regions were identified in the hemagglutinin neuraminidase (regions 314-361 and 474-490) and fusion protein (region 440-484). The region identified in the fusion protein does not show any unique site between the G1a and G3 isolates, five differentially glycosylated sites in the G1a and G3 genotype isolates were identified in epitopic regions of hemagglutinin neuraminidase. All positively selected codons were found to be located either in the region 314-316 or in the region 474-490 what indicates a strong positive selection in this region and reveals that these regions are susceptible to evolutionary pressure possibly caused by antibodies what gives a strong verification to our hypothesis that neutralising antibodies are a key determinant in the inherently complex adaptive evolution of HPIV2 in the region.


Subject(s)
Antibodies, Neutralizing/physiology , Parainfluenza Virus 2, Human/genetics , Rubulavirus Infections/virology , Adolescent , Age Distribution , Animals , Antibodies, Viral/physiology , Child , Child, Preschool , Chlorocebus aethiops , Croatia/epidemiology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Female , Genotype , Guinea Pigs , HN Protein/immunology , Humans , Infant , Likelihood Functions , Middle Aged , Parainfluenza Virus 2, Human/classification , Parainfluenza Virus 2, Human/immunology , Phylogeny , RNA, Viral/chemistry , RNA, Viral/genetics , Recurrence , Rubulavirus Infections/epidemiology , Rubulavirus Infections/immunology , Seasons , Sequence Alignment , Vero Cells
2.
Hum Vaccin Immunother ; 11(10): 2446-54, 2015.
Article in English | MEDLINE | ID: mdl-26376015

ABSTRACT

Immunogenicity testing in animals is a necessary preclinical assay for demonstration of vaccine efficacy the results of which are often the basis for the decision whether to proceed or withdraw the further development of the novel vaccine candidate. However, in vivo assays are rarely, if at all, optimized and validated. Here we clearly demonstrate the importance of in vivo assay (mumps virus immunogenicity testing in guinea pigs) optimization for gaining reliable results and the suitability of Fractional factorial design of experiments (DoE) for such a purpose. By the use of DoE with resolution IV (2IV((4-1))) we clearly revealed that the parameters significantly increasing assay sensitivity were interval between animal immunizations followed by the body weight of experimental animals. The quantity (0 versus 2%) of the stabilizer (fetal bovine serum, FBS) in the sample was shown as non-influencing parameter in DoE setup. However, the separate experiment investigating only the FBS influence, and performed under other parameters optimally set, showed that FBS also influences the results of immunogenicity assay. Such finding indicated that (a) factors with strong influence on the measured outcome can hide the effects of parameters with modest/low influence and (b) the matrix of mumps virus samples to be compared for immunogenicity must be identical for reliable virus immunogenicity comparison. Finally the 3 mumps vaccine strains widely used for decades in the licensed vaccines were for the first time compared in an animal model, and results obtained were in line with their reported immunogenicity in human population supporting the predictive power of the optimized in vivo assay.


Subject(s)
Animal Experimentation/standards , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Mumps Vaccine/immunology , Mumps virus/immunology , Animals , Body Weight , Female , Guinea Pigs , Immunization Schedule , Mumps Vaccine/administration & dosage , Research Design , Treatment Outcome
3.
Epidemiol Infect ; 141(6): 1298-309, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22954346

ABSTRACT

A recent resurgence of mumps in doubly vaccinated cohorts has been observed, identifying genotype G as the current predominant genotype. In this study, the neutralization efficacy of guinea pig sera immunized with three vaccine viruses: L-Zagreb, Urabe AM9 and JL5, was tested against seven mumps viruses: three vaccine strains and four wild-type strains (two of genotype G, one of genotype C, one of genotype D) isolated during 1998-2011. All sera neutralized all viruses although at different levels. The neutralization efficiency of sera decreases several fold by temporal order of virus isolation. Therefore, we concluded that gradual evolution of mumps viruses, rather than belonging to a certain genotype, results in an antigenic divergence from the vaccine strains that decrease the neutralization capacity of vaccine-induced antibodies. Moreover, the amino-acid sequence alignment revealed three new potentially relevant regions for escape from neutralization, i.e. 113-130, 375-403 and 440-443.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Mumps Vaccine/immunology , Mumps virus/immunology , Mumps/immunology , Animals , Epitopes/immunology , Genotype , Guinea Pigs/immunology , Humans , Mumps/prevention & control , Mumps/virology , Phylogeny
4.
Comp Biochem Physiol C Toxicol Pharmacol ; 147(4): 434-40, 2008 May.
Article in English | MEDLINE | ID: mdl-18313364

ABSTRACT

Direct, dose dependent effects of the nose-horned vipers (Vipera ammodytes ammodytes) venom on various parameters of cardiac action in isolated rat hearts were examined. Biochemical (protein content, SDS polyacrylamide gel electrophoresis) and biological (minimum haemorrhagic and necrotizing dose and lethal dose (LD(50))) characterization of the venom was performed before testing. The hearts were infused with venom doses of 30, 90 and 150 microg/mL for 10 min followed by 30 min of wash out period. Left ventricular pressure, coronary flow, heart rate, atrioventricular conduction, myocardial oxygen consumption, incidence and duration of arrhythmias were measured and relative cardiac efficiency was calculated. Cardiac CPK, LDH, AST and troponin I were measured as biochemical markers of myocardial damage. The venom caused dose dependent electrophysiological instability and depression of contractility and coronary flow. Effects on the heart rate were biphasic; transient increase followed by significant slowing of the frequency. Relative cardiac efficiency decreased as oxygen consumption remained high relative to the heart rate-contractility product, indicating purposeless expenditure of oxygen and energy. Effects by the dose of 30 microg/mL were highly reversible while the dose of 90 mug/mL caused damages that were mostly irreversible. The dose of 150 mug/mL induced irreversible asystolic cardiac arrest.


Subject(s)
Heart/drug effects , Hemodynamics/drug effects , Viper Venoms/toxicity , Viperidae , Animals , Biomarkers/metabolism , Coronary Circulation/drug effects , Coronary Circulation/physiology , Coronary Vessels/drug effects , Coronary Vessels/physiopathology , Dose-Response Relationship, Drug , Enzymes/metabolism , Heart/physiopathology , Heart Rate/drug effects , Heart Rate/physiology , Hemodynamics/physiology , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxygen Consumption/drug effects , Oxygen Consumption/physiology , Rats , Troponin I/metabolism , Ventricular Pressure/drug effects , Ventricular Pressure/physiology
5.
Comp Biochem Physiol C Toxicol Pharmacol ; 140(2): 257-63, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15907770

ABSTRACT

Vipera ammodytes ammodytes venom has been used for many years in Croatia for immunization of horses and production of specific therapeutic anti-venoms. The neutralizing effectiveness of anti-venoms is directly dependent on the properties of the snake venom used for immunization. Therefore, appropriate characterization of the whole venom is necessary prior to use in the immunization procedure. In the course of such analyses, the variability in biochemical properties and biological activity was observed in venoms collected from snakes originating from different parts of Croatia. The venom pools also differed with respect to time of snake collection (1992-2003). Analyses of three samples of whole venom pools were carried out revealing differences in lethal activity (LD50), minimum haemorrhagic dose (MHD), minimum necrotizing dose (MND), phospholipase A2 activity and in anticomplementary activity. SDS-PAGE electrophoretic patterns were similar, but not identical, for all tested venom pools with respect to the number of protein bands detected, but intensity of particular components differed. Preliminary immunogenicity testing in terms of determination of specific antibodies revealed similar immunogenicity and high cross-reactivity for three samples tested.


Subject(s)
Viper Venoms/immunology , Viper Venoms/toxicity , Viperidae , Animals , Antivenins/analysis , Complement Inactivator Proteins/analysis , Croatia , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Female , Hemorrhage/chemically induced , Lethal Dose 50 , Male , Mice , Necrosis/chemically induced , Phospholipases A/metabolism , Phospholipases A2
SELECTION OF CITATIONS
SEARCH DETAIL
...