Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Theory Comput ; 15(7): 3974-3990, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31117478

ABSTRACT

This paper reports an implementation of Hartree-Fock linear response with complex orbitals for computing electronic spectra of molecules in strong external magnetic fields. The implementation is completely general, allowing for spin-restricted, spin-unrestricted, and general two-component reference states. The method is applied to small molecules placed in strong uniform and nonuniform magnetic fields of astrochemical importance at the Random Phase Approximation level of theory. For uniform fields, where comparison is possible, the spectra are found to be qualitatively similar to those recently obtained with equation of motion coupled cluster theory. We also study the behavior of spin-forbidden excitations with progressive loss of spin symmetry induced by nonuniform magnetic fields. Finally, the equivalence of length and velocity gauges for oscillator strengths when using complex orbitals is investigated and found to hold numerically.

2.
J Chem Phys ; 143(7): 074110, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26298118

ABSTRACT

An implementation of coupled-cluster (CC) theory to treat atoms and molecules in finite magnetic fields is presented. The main challenges for the implementation stem from the magnetic-field dependence in the Hamiltonian, or, more precisely, the appearance of the angular momentum operator, due to which the wave function becomes complex and which introduces a gauge-origin dependence. For this reason, an implementation of a complex CC code is required together with the use of gauge-including atomic orbitals to ensure gauge-origin independence. Results of coupled-cluster singles-doubles-perturbative-triples (CCSD(T)) calculations are presented for atoms and molecules with a focus on the dependence of correlation and binding energies on the magnetic field.

3.
Science ; 337(6092): 327-31, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22822146

ABSTRACT

Elementary chemistry distinguishes two kinds of strong bonds between atoms in molecules: the covalent bond, where bonding arises from valence electron pairs shared between neighboring atoms, and the ionic bond, where transfer of electrons from one atom to another leads to Coulombic attraction between the resulting ions. We present a third, distinct bonding mechanism: perpendicular paramagnetic bonding, generated by the stabilization of antibonding orbitals in their perpendicular orientation relative to an external magnetic field. In strong fields such as those present in the atmospheres of white dwarfs (on the order of 10(5) teslas) and other stellar objects, our calculations suggest that this mechanism underlies the strong bonding of H(2) in the (3)Σ(u)(+)(1σ(g)1σ(u)*) triplet state and of He(2) in the (1)Σ(g)(+)(1σ(g)(2)1σ(u)(*2)) singlet state, as well as their preferred perpendicular orientation in the external field.

SELECTION OF CITATIONS
SEARCH DETAIL