Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pain Res (Lausanne) ; 3: 963174, 2022.
Article in English | MEDLINE | ID: mdl-35959236

ABSTRACT

Introduction: The G-protein coupled receptor LPAR5 plays a prominent role in LPA-mediated pain and itch signaling. In this study we focus on the LPAR5-antagonist compound 3 (cpd3) and its ability to affect pain and itch signaling, both in vitro and in vivo. Methods: Nociceptive behavior in wild type mice was induced by formalin, carrageenan or prostaglandin E2 (PGE2) injection in the hind paw, and the effect of oral cpd3 administration was measured. Scratch activity was measured after oral administration of cpd3, in mice overexpressing phospholipase A2 ( sPLA 2 tg ), in wild type mice (WT) and in TRPA1-deficient mice (Trpa1 KO). In vitro effects of cpd3 were assessed by measuring intracellular calcium release in HMC-1 and HEK-TRPA1 cells. Results: As expected, nociceptive behavior (induced by formalin, carrageenan or PGE2) was reduced after treatment with cpd3. Unexpectedly, cpd3 induced scratch activity in mice. In vitro addition of cpd3 to HEK-TRPA1 cells induced an intracellular calcium wave that could be inhibited by the TRPA1-antagonist A-967079. In Trpa1 KO mice, however, the increase in scratch activity after cpd3 administration was not reduced. Conclusions: Cpd3 has in vivo antinociceptive effects but induces scratch activity in mice, probably by activation of multiple pruriceptors, including TRPA1. These results urge screening of antinociceptive candidate drugs for activity with pruriceptors.

2.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166239, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34389475

ABSTRACT

BACKGROUND: Autotaxin is an enzyme that converts lysophospholipid into lysophosphatidic acid (LPA), a highly potent signaling molecule through a range of LPA receptors. It is therefore important to investigate which factors play a role in regulating ATX expression. Since we have reported that ATX levels increase dramatically in patients with various forms of cholestasis, we embarked on a study to reveal factors that influence the enzyme activity ATX as well as its expression level in vitro and in vivo. METHODS: Bile from cholestatic patients was fractionated by HPLC and analyzed for modulation of ATX activity. ATX expression was measured in fibroblasts upon stimulation or inhibition of LPA signaling. RESULTS: Surprisingly, ATX activity was stimulated by most forms of its product LPA, but it was inhibited by bile salts and bile salt-like molecules, particularly by 3-OH sulfated bile salts and sulfated progesterone metabolites that are known to accumulate during chronic cholestasis and cholestasis of pregnancy, respectively. Activation of fibroblasts by LPA decreased ATX expression by 72%. Conversely, inhibition of LPA signaling increased ATX expression 3-fold, indicating strong feedback regulation by LPA signaling. In fibroblasts, we could verify that inhibition of ATX activity by bile salts induces its expression. Furthermore, induction of cholestasis in mice causes increased plasma ATX activity. CONCLUSIONS: Multiple biliary compounds that accumulate in the systemic circulation during cholestasis inhibit ATX activity and thereby increase ATX expression through feedback regulation. This mechanism may contribute to increased serum ATX activity in patients with cholestasis.


Subject(s)
Bile Acids and Salts/metabolism , Liver Cirrhosis, Biliary/complications , Lysophospholipids/metabolism , Phosphoric Diester Hydrolases/metabolism , Pruritus/metabolism , Drainage , Enzyme Assays , Feedback, Physiological , Humans , Liver Cirrhosis, Biliary/blood , Liver Cirrhosis, Biliary/metabolism , Liver Cirrhosis, Biliary/therapy , Pruritus/blood , Pruritus/etiology , Receptors, Lysophosphatidic Acid/metabolism
3.
Front Med (Lausanne) ; 8: 639674, 2021.
Article in English | MEDLINE | ID: mdl-33791327

ABSTRACT

Pruritus is a debilitating symptom of various cholestatic disorders, including primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) and inherited progressive familial intrahepatic cholestasis (PFIC). The molecular mechanisms leading to cholestasis-associated pruritus are still unresolved and the involved pruritogens are indecisive. As a consequence of pruritus, patients suffer from sleep deprivation, loss of daytime concentration, auto-mutilation and sometimes even suicidal ideations. Current guideline-approved therapy of cholestasis-associated pruritus includes stepwise administration of several medications, which may alleviate complaints in some, but not all affected patients. Therefore, also experimental therapeutic approaches are required to improve patients' quality of life. This article reviews the current state of research on pruritogens and their receptors, and shortly discusses the most recent experimental therapies.

4.
Sci Rep ; 11(1): 6127, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731871

ABSTRACT

Pruritus is one of the most distressing symptoms in cholestatic patients. Plasma autotaxin (ATX) activity correlates with the severity of pruritus in cholestatic patients, but the pathophysiology is unclear. To study pruritus in mice, we measured scratch activity in cholestatic Atp8b1 mutant mice, a model for Progressive Familial Intrahepatic Cholestasis type 1, and wild type mice (WT) with alpha-naphthylisothiocyanate (ANIT)-induced cholestasis. To induce cholestasis, Atp8b1 mutant mice received a diet containing 0.1% cholic acid (CA) and WT mice were treated with ANIT. In these mice ATX was also overexpressed by transduction with AAV-ATX. Scratch activity was measured using an unbiased, electronic assay. Marked cholestasis was accomplished in both Atp8b1 mutant mice on a CA-supplemented diet and in ANIT-treatment in WT mice, but scratch activity was decreased rather than increased while plasma ATX activity was increased. Plasma ATX activity was further increased up to fivefold with AAV-ATX, but this did not induce scratch activity. In contrast to several reports two cholestatic mouse models did not display increased scratch activity as a measure of itch perception. Increasing plasma ATX activity by overexpression also did not lead to increased scratch activity in mice. This questions whether mice are suitable to study cholestatic itch.


Subject(s)
Cholestasis, Intrahepatic/physiopathology , Disease Models, Animal , Pruritus/physiopathology , Animals , Female , Humans , Male , Mice , Mice, Inbred C57BL , Pregnancy
5.
J Clin Apher ; 33(6): 638-644, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30321466

ABSTRACT

INTRODUCTION: Intrahepatic cholestasis of pregnancy is characterised by pruritus and elevated serum bile acids. The pruritus can be severe, and pharmacological options achieve inconsistent symptomatic improvement. Raised bile acids are linearly associated with adverse fetal outcomes, with existing management of limited benefit. We hypothesised that therapeutic plasma exchange removes pruritogens and lowers total bile acid concentrations, and improves symptoms and biochemical abnormalities in severe cases that have not responded to other treatments. METHODS: Four women with severe pruritus and hypercholanemia were managed with therapeutic plasma exchange. Serial blood biochemistry and visual analogue scores of itch severity were obtained. Blood and waste plasma samples were collected before and after exchange; individual bile acids and sulfated progesterone metabolites were measured with HPLC-MS, autotaxin activity and cytokine profiles with enzymatic methods. Results were analysed using segmental linear regression to describe longitudinal trends, and ratio t tests. RESULTS: Total bile acids and visual analogue itch scores demonstrated trends to transiently improve following plasma exchange, with temporary symptomatic benefit reported. Individual bile acids (excluding the drug ursodeoxycholic acid), and the sulfated metabolites of progesterone reduced following exchange (P = .03 and P = .04, respectively), whilst analysis of waste plasma demonstrated removal of autotaxin and cytokines. CONCLUSIONS: Therapeutic plasma exchange can lower potentially harmful bile acids and improve itch, likely secondary to the demonstrated removal of pruritogens. However, the limited current experience and potential complications, along with minimal sustained symptomatic benefit, restrict its current use to women with the most severe disease for whom other treatment options have been exhausted.


Subject(s)
Cholestasis, Intrahepatic/therapy , Plasma Exchange/methods , Pregnancy Complications/therapy , Bile Acids and Salts/blood , Cytokines/isolation & purification , Female , Humans , Phosphoric Diester Hydrolases/isolation & purification , Pregnancy , Pruritus/etiology , Treatment Outcome
6.
Sci Rep ; 8(1): 6658, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29704003

ABSTRACT

Pruritus is a common complication of cholestatic liver diseases. Inhibition of the ileal bile acid transporter (IBAT/ASBT) may emerge as treatment option. Our aim was to assess tolerability and effect on pruritus of the selective IBAT inhibitor A4250 in patients with primary biliary cholangitis (PBC). Ten patients with PBC and bile acid sequestrant treatment of cholestatic pruritus were after a two-week wash out of the bile acid sequestrant treated with either 0.75 mg (n = 4) or 1.5 mg (n = 5) of A4250 for four weeks. Patients' pruritus was assessed by Visual Analogue Scale (VAS), 5-D itch scale and the pruritus module of the PBC40 questionnaire. Plasma bile acids and 7α-hydroxy-4-cholesten-3-one were measured by UPLC-MS/MS, plasma fibroblast growth factor 19 by ELISA, and serum autotaxin activity by homemade assay. All nine patients exposed to A4250 reported a remarkable improvement in pruritus, until none or mild according to 5-D itch, VAS and PBC40 pruritus. Five patients finished the study prematurely due to abdominal pain (5/5) and diarrhoea (4/5). The high incidence of probably bile acid malabsorption-related diarrhoea and abdominal pain in the bile acid sequestrant pre-treated population indicates that the start dose of A4250 may have been too high for adult patients.


Subject(s)
Cholestasis/complications , Enzyme Inhibitors/administration & dosage , Liver Cirrhosis, Biliary/complications , Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors , Pruritus/drug therapy , Symporters/antagonists & inhibitors , Aged , Bile Acids and Salts/blood , Enzyme Inhibitors/adverse effects , Female , Humans , Male , Middle Aged , Pilot Projects , Treatment Outcome
7.
Dis Model Mech ; 9(10): 1147-1158, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27483345

ABSTRACT

Social cognition is an endophenotype that is impaired in schizophrenia and several other (comorbid) psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1 receptor (Drd1). Because current Drd1 receptor agonists are not Drd1 selective, pharmacological tools are not sufficient to delineate the role of the Drd1. Here, we describe a novel rat model with a genetic mutation in Drd1 in which we measured basic behavioural phenotypes and social cognition. The I116S mutation was predicted to render the receptor less stable. In line with this computational prediction, this Drd1 mutation led to a decreased transmembrane insertion of Drd1, whereas Drd1 expression, as measured by Drd1 mRNA levels, remained unaffected. Owing to decreased transmembrane Drd1 insertion, the mutant rats displayed normal basic motoric and neurological parameters, as well as locomotor activity and anxiety-like behaviour. However, measures of social cognition like social interaction, scent marking, pup ultrasonic vocalizations and sociability, were strongly reduced in the mutant rats. This profile of the Drd1 mutant rat offers the field of neuroscience a novel genetic rat model to study a series of psychiatric disorders including schizophrenia, autism, depression, bipolar disorder and drug addiction.


Subject(s)
Cognition , Models, Genetic , Receptors, Dopamine D1/genetics , Social Behavior , Animals , Cell Membrane/metabolism , Disease Models, Animal , Exploratory Behavior , Grooming , Ligands , Male , Maze Learning , Models, Molecular , Mutation/genetics , Rats, Wistar , Receptors, Dopamine D1/chemistry , Ultrasonics , Vocalization, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...