Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Nat Commun ; 15(1): 3128, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605096

ABSTRACT

One of the strategies towards an effective HIV-1 vaccine is to elicit broadly neutralizing antibody responses that target the high HIV-1 Env diversity. Here, we present an HIV-1 vaccine candidate that consists of cobalt porphyrin-phospholipid (CoPoP) liposomes decorated with repaired and stabilized clade C HIV-1 Env trimers in a prefusion conformation. These particles exhibit high HIV-1 Env trimer decoration, serum stability and bind broadly neutralizing antibodies. Three sequential immunizations of female rabbits with CoPoP liposomes displaying a different clade C HIV-1 gp140 trimer at each dosing generate high HIV-1 Env-specific antibody responses. Additionally, serum neutralization is detectable against 18 of 20 multiclade tier 2 HIV-1 strains. Furthermore, the peak antibody titers induced by CoPoP liposomes can be recalled by subsequent heterologous immunization with Ad26-encoded membrane-bound stabilized Env antigens. Hence, a CoPoP liposome-based HIV-1 vaccine that can generate cross-clade neutralizing antibody immunity could potentially be a component of an efficacious HIV-1 vaccine.


Subject(s)
AIDS Vaccines , HIV-1 , env Gene Products, Human Immunodeficiency Virus , Animals , Female , Rabbits , Antibodies, Neutralizing , HIV Antibodies , HIV Infections , Immunization , Liposomes , Phospholipids
2.
Vaccines (Basel) ; 12(3)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38543928

ABSTRACT

Human respiratory syncytial virus (RSV) poses a significant human health threat, particularly to infants and the elderly. While efficacious vaccines based on the F protein have recently received market authorization, uncertainties remain regarding the future need for vaccine updates to counteract potential viral drift. The attachment protein G has long been ignored as a vaccine target due to perceived non-essentiality and ineffective neutralization on immortalized cells. Here, we show strong G-based neutralization in fully differentiated human airway epithelial cell (hAEC) cultures that is comparable to F-based neutralization. Next, we designed an RSV vaccine component based on the central conserved domain (CCD) of G fused to self-assembling lumazine synthase (LS) nanoparticles from the thermophile Aquifex aeolicus as a multivalent antigen presentation scaffold. These nanoparticles, characterized by high particle expression and assembly through the introduction of N-linked glycans, showed exceptional thermal and storage stability and elicited potent RSV neutralizing antibodies in a mouse model. In conclusion, our results emphasize the pivotal role of RSV G in the viral lifecycle and culminate in a promising next-generation RSV vaccine candidate characterized by excellent manufacturability and immunogenic properties. This candidate could function independently or synergistically with current F-based vaccines.

3.
Sci Rep ; 14(1): 5735, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459086

ABSTRACT

The spike protein (S) of SARS-CoV-2 induces neutralizing antibodies and is the key component of current COVID-19 vaccines. The most efficacious COVID-19 vaccines are genetically-encoded spikes with a double proline substitution in the hinge region to stabilize S in the prefusion conformation (S-2P). A subunit vaccine can be a valuable addition to mRNA and viral vector-based vaccines but requires high stability of spike. In addition, further stabilization of the prefusion conformation of spike might improve immunogenicity. To test this, five spike proteins were designed and characterized, ranging from low to high stability. The immunogenicity of these proteins was assessed in mice, demonstrating that a spike (S-closed-2) with a high melting temperature, which still allowed ACE2 binding, induced the highest neutralization titers against homologous and heterologous strains (up to 16-fold higher than the least stabilized spike). In contrast, the most stable spike variant (S-locked), in which the receptor binding domains (RBDs) were locked in a closed conformation and thus not able to breathe, induced relatively low neutralizing antibody titers against heterologous strains. These data demonstrate that S protein stabilization with RBDs exposing highly conserved epitopes may be needed to increase the immunogenicity of spike proteins for future COVID-19 vaccines.


Subject(s)
COVID-19 , Viral Vaccines , Mice , Humans , Animals , SARS-CoV-2 , COVID-19 Vaccines , Antibodies, Viral , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/prevention & control , Antibodies, Neutralizing
4.
NPJ Vaccines ; 9(1): 8, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184641

ABSTRACT

The quantitation of antibody responses is a critical requirement for the successful development of vaccines and therapeutics that often relies on the use of standardized reference materials to determine relative quantities within biological samples. The validity of comparing responses across assays using arbitrarily defined reference values is therefore limited. We developed a generalizable method known as MASCALE (Mass Spectrometry Enabled Conversion to Absolute Levels of ELISA Antibodies) for absolute quantitation of antibodies by calibrating ELISA reference sera using mass spectrometry. Levels of proteotypic peptides served as a proxy for human IgG, allowing the conversion of responses from arbitrary values to absolute amounts. Applications include comparison of binding assays at two separate laboratories and evaluation of cross-clade magnitude-breadth responses induced by an investigational HIV-1 vaccine regimen. MASCALE addresses current challenges in the interpretation of immune responses in clinical trials and expands current options available to make suitable comparisons across different settings.

5.
NPJ Vaccines ; 8(1): 176, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37952003

ABSTRACT

Seasonal influenza vaccines must be updated annually and suboptimally protect against strains mismatched to the selected vaccine strains. We previously developed a subunit vaccine antigen consisting of a stabilized trimeric influenza A group 1 hemagglutinin (H1) stem protein that elicits broadly neutralizing antibodies. Here, we further optimized the stability and manufacturability of the H1 stem antigen (H1 stem v2, also known as INFLUENZA G1 mHA) and characterized its formulation and potency with different adjuvants in vitro and in animal models. The recombinant H1 stem antigen (50 µg) was administered to influenza-naïve non-human primates either with aluminum hydroxide [Al(OH)3] + NaCl, AS01B, or SLA-LSQ formulations at week 0, 8 and 34. These SLA-LSQ formulations comprised of varying ratios of the synthetic TLR4 agonist 'second generation synthetic lipid adjuvant' (SLA) with liposomal QS-21 (LSQ). A vaccine formulation with aluminum hydroxide or SLA-LSQ (starting at a 10:25 µg ratio) induced HA-specific antibodies and breadth of neutralization against a panel of influenza A group 1 pseudoviruses, comparable with vaccine formulated with AS01B, four weeks after the second immunization. A formulation with SLA-LSQ in a 5:2 µg ratio contained larger fused or aggregated liposomes and induced significantly lower humoral responses. Broadly HA stem-binding antibodies were detectable for the entire period after the second vaccine dose up to week 34, after which they were boosted by a third vaccine dose. These findings inform about potential adjuvant formulations in clinical trials with an H1 stem-based vaccine candidate.

6.
PLoS Pathog ; 19(5): e1011308, 2023 05.
Article in English | MEDLINE | ID: mdl-37126534

ABSTRACT

The global spread of the SARS-CoV-2 virus has resulted in emergence of lineages which impact the effectiveness of immunotherapies and vaccines that are based on the early Wuhan isolate. All currently approved vaccines employ the spike protein S, as it is the target for neutralizing antibodies. Here we describe two SARS-CoV-2 isolates with unusually large deletions in the N-terminal domain (NTD) of the spike. Cryo-EM structural analysis shows that the deletions result in complete reshaping of the NTD supersite, an antigenically important region of the NTD. For both spike variants the remodeling of the NTD negatively affects binding of all tested NTD-specific antibodies in and outside of the NTD supersite. For one of the variants, we observed a P9L mediated shift of the signal peptide cleavage site resulting in the loss of a disulfide-bridge; a unique escape mechanism with high antigenic impact. Although the observed deletions and disulfide mutations are rare, similar modifications have become independently established in several other lineages, indicating a possibility to become more dominant in the future. The observed plasticity of the NTD foreshadows its broad potential for immune escape with the continued spread of SARS-CoV-2.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Antibodies, Neutralizing , Disulfides , Immunotherapy , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral
7.
NPJ Vaccines ; 8(1): 45, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36949051

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of severe respiratory disease for which no licensed vaccine is available. We have previously shown that a prefusion (preF) conformation-stabilized RSV F protein antigen and an adenoviral vector encoding RSV preF protein (Ad26.RSV.preF) are immunogenic and protective in animals when administered as single components. Here, we evaluated a combination of the 2 components, administered as a single injection. Strong induction of both humoral and cellular responses was shown in RSV-naïve and pre-exposed mice and pre-exposed African green monkeys (AGMs). Both components of the combination vaccine contributed to humoral immune responses, while the Ad26.RSV.preF component was the main contributor to cellular immune responses in both mice and AGMs. Immunization with the combination elicited superior protection against RSV A2 challenge in cotton rats. These results demonstrate the advantage of a combination vaccine and support further clinical development.

9.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35131851

ABSTRACT

For an efficacious vaccine immunogen, influenza hemagglutinin (HA) needs to maintain a stable quaternary structure, which is contrary to the inherently dynamic and metastable nature of class I fusion proteins. In this study, we stabilized HA with three substitutions within its pH-sensitive regions where the refolding starts. An X-ray structure reveals how these substitutions stabilize the intersubunit ß-sheet in the base and form an interprotomeric aliphatic layer across the stem while the native prefusion HA fold is retained. The identification of the stabilizing substitutions increases our understanding of how the pH sensitivity is structurally accomplished in HA and possibly other pH-sensitive class I fusion proteins. Our stabilization approach in combination with the occasional back mutation of rare amino acids to consensus results in well-expressing stable trimeric HAs. This repair and stabilization approach, which proves broadly applicable to all tested influenza A HAs of group 1 and 2, will improve the developability of influenza vaccines based on different types of platforms and formats and can potentially improve efficacy.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins/genetics , Amino Acids/genetics , Cell Line , Humans , Hydrogen-Ion Concentration , Influenza Vaccines/genetics , Influenza, Human/virology , Mutation/genetics , Protein Conformation, beta-Strand/genetics
10.
Vaccine ; 40(6): 934-944, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34973849

ABSTRACT

Respiratory Syncytial Virus (RSV) remains a leading cause of severe respiratory disease for which no licensed vaccine is available. We have previously described the derivation of an RSV Fusion protein (F) stabilized in its prefusion conformation (preF) as vaccine immunogen and demonstrated superior immunogenicity in naive mice of preF versus wild type RSV F protein, both as protein and when expressed from an Ad26 vaccine vector. Here we address the question if there are qualitative differences between the two vaccine platforms for induction of protective immunity. In naïve mice, both Ad26.RSV.preF and preF protein induced humoral responses, whereas cellular responses were only elicited by Ad26.RSV.preF. In RSV pre-exposed mice, a single dose of either vaccine induced cellular responses and strong humoral responses. Ad26-induced RSV-specific cellular immune responses were detected systemically and locally in the lungs. Both vaccines showed protective efficacy in the cotton rat model, but Ad26.RSV.preF conferred protection at lower virus neutralizing titers in comparison to RSV preF protein. Factors that may contribute to the protective capacity of Ad26.RSV.preF elicited immunity are the induced IgG2a antibodies that are able to engage Fcγ receptors mediating Antibody Dependent Cellular Cytotoxicity (ADCC), and the induction of systemic and lung resident RSV specific CD8 + T cells. These data demonstrate qualitative improvement of immune responses elicited by an adenoviral vector based vaccine encoding the RSV preF antigen compared to the subunit vaccine in small animal models which may inform RSV vaccine development.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Animals , Antibodies, Neutralizing , Antibodies, Viral , Mice , Respiratory Syncytial Virus, Human/genetics , Viral Fusion Proteins/genetics
11.
NPJ Vaccines ; 6(1): 39, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33741993

ABSTRACT

Previously we have shown that a single dose of recombinant adenovirus serotype 26 (Ad26) vaccine expressing a prefusion stabilized SARS-CoV-2 spike antigen (Ad26.COV2.S) is immunogenic and provides protection in Syrian hamster and non-human primate SARS-CoV-2 infection models. Here, we investigated the immunogenicity, protective efficacy, and potential for vaccine-associated enhanced respiratory disease (VAERD) mediated by Ad26.COV2.S in a moderate disease Syrian hamster challenge model, using the currently most prevalent G614 spike SARS-CoV-2 variant. Vaccine doses of 1 × 109 and 1 × 1010 VP elicited substantial neutralizing antibodies titers and completely protected over 80% of SARS-CoV-2 inoculated Syrian hamsters from lung infection and pneumonia but not upper respiratory tract infection. A second vaccine dose further increased neutralizing antibody titers that was associated with decreased infectious viral load in the upper respiratory tract after SARS-CoV-2 challenge. Suboptimal non-protective immune responses elicited by low-dose A26.COV2.S vaccination did not exacerbate respiratory disease in SARS-CoV-2-inoculated Syrian hamsters with breakthrough infection. In addition, dosing down the vaccine allowed to establish that binding and neutralizing antibody titers correlate with lower respiratory tract protection probability. Overall, these preclinical data confirm efficacy of a one-dose vaccine regimen with Ad26.COV2.S in this G614 spike SARS-CoV-2 virus variant Syrian hamster model, show the added benefit of a second vaccine dose, and demonstrate that there are no signs of VAERD under conditions of suboptimal immunity.

12.
Nat Commun ; 12(1): 244, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431842

ABSTRACT

The trimeric spike (S) protein of SARS-CoV-2 is the primary focus of most vaccine design and development efforts. Due to intrinsic instability typical of class I fusion proteins, S tends to prematurely refold to the post-fusion conformation, compromising immunogenic properties and prefusion trimer yields. To support ongoing vaccine development efforts, we report the structure-based design of soluble S trimers with increased yields and stabilities, based on introduction of single point mutations and disulfide-bridges. We identify regions critical for stability: the heptad repeat region 1, the SD1 domain and position 614 in SD2. We combine a minimal selection of mostly interprotomeric mutations to create a stable S-closed variant with a 6.4-fold higher expression than the parental construct while no longer containing a heterologous trimerization domain. The cryo-EM structure reveals a correctly folded, predominantly closed pre-fusion conformation. Highly stable and well producing S protein and the increased understanding of S protein structure will support vaccine development and serological diagnostics.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Cryoelectron Microscopy , Humans , Models, Molecular , Mutation , Protein Conformation , Protein Domains , Protein Stability , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics
13.
Cell Rep ; 33(8): 108432, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33238130

ABSTRACT

Soluble envelope (Env) trimers, stabilized in a prefusion-closed conformation, can elicit neutralizing responses against HIV-1 strains closely related to the immunizing trimer. However, to date such stabilization has succeeded with only a limited number of HIV-1 strains. To address this issue, here we develop ADROITrimer, an automated procedure involving structure-based stabilization and consensus repair, and generate "RnS-DS-SOSIP"-stabilized Envs from 180 diverse Env sequences. The vast majority of these RnS-DS-SOSIP Envs fold into prefusion-closed conformations as judged by antigenic analysis and size exclusion chromatography. Additionally, representative strains from clades AE, B, and C are stabilized in prefusion-closed conformations as shown by negative-stain electron microscopy, and the crystal structure of a clade A strain MI369.A5 Env trimer provides 3.5 Å resolution detail into stabilization and repair mutations. The automated procedure reported herein that yields well-behaved, soluble, prefusion-closed Env trimers from a majority of HIV-1 strains could have substantial impact on the development of an HIV-1 vaccine.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV-1/immunology , Protein Multimerization/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Consensus , Humans
14.
NPJ Vaccines ; 5: 91, 2020.
Article in English | MEDLINE | ID: mdl-33083026

ABSTRACT

Development of effective preventative interventions against SARS-CoV-2, the etiologic agent of COVID-19 is urgently needed. The viral surface spike (S) protein of SARS-CoV-2 is a key target for prophylactic measures as it is critical for the viral replication cycle and the primary target of neutralizing antibodies. We evaluated design elements previously shown for other coronavirus S protein-based vaccines to be successful, e.g., prefusion-stabilizing substitutions and heterologous signal peptides, for selection of a S-based SARS-CoV-2 vaccine candidate. In vitro characterization demonstrated that the introduction of stabilizing substitutions (i.e., furin cleavage site mutations and two consecutive prolines in the hinge region of S2) increased the ratio of neutralizing versus non-neutralizing antibody binding, suggestive for a prefusion conformation of the S protein. Furthermore, the wild-type signal peptide was best suited for the correct cleavage needed for a natively folded protein. These observations translated into superior immunogenicity in mice where the Ad26 vector encoding for a membrane-bound stabilized S protein with a wild-type signal peptide elicited potent neutralizing humoral immunity and cellular immunity that was polarized towards Th1 IFN-γ. This optimized Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in a phase I clinical trial (ClinicalTrials.gov Identifier: NCT04436276).

15.
NPJ Vaccines ; 5(1): 49, 2020.
Article in English | MEDLINE | ID: mdl-32566260

ABSTRACT

While RSV is a major cause of respiratory morbidity in infants, vaccine development is hindered by the immaturity and Th2-bias of the infant immune system and the legacy of enhanced respiratory disease (ERD) after RSV infection following immunization with formalin inactivated (FI)-RSV vaccine in earlier clinical trials. Preclinical studies have demonstrated that an adenoviral vector-based RSV F vaccine candidate (Ad26.RSV.FA2) induces Th1-biased protective immune responses, without signs of ERD upon subsequent RSV challenge. We here developed an Ad26 vector encoding the RSV F protein stabilized in its prefusion conformation (Ad26.RSV.preF). In adult mice, Ad26.RSV.preF induced superior, Th1-biased IgG2a-dominated humoral responses as compared to Ad26.RSV.FA2, while maintaining the strong Th1-biased cellular responses. Similar to adult mice, Ad26.RSV.preF induced robust and durable humoral immunity in neonatal mice, again characterized by IgG2a-dominated RSV F-binding antibodies, and high and stable virus-neutralizing titers. In addition, vaccine-elicited cellular immune responses were durable and characterized by IFN-γ-producing CD4+ and CD8+ T cells, with a profound Th1 bias. In contrast, immunization of neonatal mice with FI-RSV resulted in IgG1 RSV F-binding antibodies associated with a Th2 phenotype, no detectable virus-neutralizing antibodies, and a Th2-biased cellular response. These results are supportive for the clinical development of Ad26.RSV.preF for use in infants.

16.
J Infect Dis ; 222(6): 979-988, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32320465

ABSTRACT

BACKGROUND: Despite the high disease burden of respiratory syncytial virus (RSV) in older adults, there is no approved vaccine. We evaluated the experimental RSV vaccine, Ad26.RSV.preF, a replication-incompetent adenovirus 26 vector encoding the F protein stabilized in prefusion conformation. METHODS: This phase 1 clinical trial was performed in healthy adults aged ≥60 years. Seventy-two participants received 1 or 2 intramuscular injections of low-dose (LD; 5 × 1010 vector particles) or high-dose (HD; 1 × 1011 vector particles) Ad26.RSV.preF vaccine or placebo, with approximately 12 months between doses and 2-year follow-up for safety and immunogenicity outcomes. RESULTS: Solicited adverse events were reported by 44% of vaccine recipients and were transient and mild or moderate in intensity. No serious adverse events were related to vaccination. After the first vaccination, geometric mean titers for RSV-A2 neutralization increased from baseline (432 for LD and 512 for HD vaccine) to day 29 (1031 for LD and 1617 for HD). Pre-F-specific antibody geometric mean titers and median frequencies of F-specific interferon γ-secreting T cells also increased substantially from baseline. These immune responses were still maintained above baseline levels 2 years after immunization and could be boosted with a second immunization at 1 year. CONCLUSIONS: Ad26.RSV.preF (LD and HD) had an acceptable safety profile and elicited sustained humoral and cellular immune responses after a single immunization in older adults.


Subject(s)
Adenoviridae , Genetic Vectors , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/immunology , Adenoviridae/genetics , Age Factors , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Female , Genetic Vectors/genetics , Humans , Immunity, Cellular , Immunogenicity, Vaccine , Male , Middle Aged , Respiratory Syncytial Virus Vaccines/adverse effects , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus, Human/genetics , Vaccination , Viral Fusion Proteins/genetics
17.
Cell Rep ; 30(13): 4540-4550.e3, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32234486

ABSTRACT

Ebola virus causes severe hemorrhagic fever, often leading to death in humans. The trimeric fusion glycoprotein (GP) is the sole target for neutralizing antibodies and is the major focus of vaccine development. Soluble GP ectodomains are unstable and mostly monomeric when not fused to a heterologous trimerization domain. Here, we report structure-based designs of Ebola and Marburg GP trimers based on a stabilizing mutation in the hinge loop in refolding region 1 and substitution of a partially buried charge at the interface of the GP1 and GP2 subunits. The combined substitutions (T577P and K588F) substantially increased trimer expression for Ebola GP proteins. We determined the crystal structure of stabilized GP from the Makona Zaire ebolavirus strain without a trimerization domain or complexed ligand. The structure reveals that the stabilized GP adopts the same trimeric prefusion conformation, provides insight into triggering of GP conformational changes, and should inform future filovirus vaccine development.


Subject(s)
Filoviridae/metabolism , Glycoproteins/chemistry , Protein Multimerization , Amino Acid Substitution , Cell Line , Crystallography, X-Ray , Ebolavirus/metabolism , Glycoproteins/genetics , Humans , Marburgvirus/metabolism , Models, Molecular , Mutation/genetics , Perfusion , Protein Domains , Protein Stability , Structure-Activity Relationship
18.
Nat Commun ; 10(1): 2105, 2019 05 08.
Article in English | MEDLINE | ID: mdl-31068578

ABSTRACT

The respiratory syncytial virus (RSV) F glycoprotein is a class I fusion protein that mediates viral entry and is a major target of neutralizing antibodies. Structures of prefusion forms of RSV F, as well as other class I fusion proteins, have revealed compact trimeric arrangements, yet whether these trimeric forms can transiently open remains unknown. Here, we perform structural and biochemical studies on a recently isolated antibody, CR9501, and demonstrate that it enhances the opening of prefusion-stabilized RSV F trimers. The 3.3 Å crystal structure of monomeric RSV F bound to CR9501, combined with analysis of over 25 previously determined RSV F structures, reveals a breathing motion of the prefusion conformation. We also demonstrate that full-length RSV F trimers transiently open and dissociate on the cell surface. Collectively, these findings have implications for the function of class I fusion proteins, as well as antibody prophylaxis and vaccine development for RSV.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Respiratory Syncytial Virus, Human/physiology , Viral Fusion Proteins/metabolism , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , B-Lymphocytes/virology , Chlorocebus aethiops , Computer Simulation , Crystallography, X-Ray , Drug Development , HEK293 Cells , HeLa Cells , Humans , Models, Molecular , Protein Multimerization/physiology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/isolation & purification , Vero Cells , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/immunology
19.
J Biol Chem ; 294(15): 5736-5746, 2019 04 12.
Article in English | MEDLINE | ID: mdl-30696772

ABSTRACT

HIV-1 entry into cells is mediated by the envelope glycoprotein (Env) and represents an attractive target for therapeutic intervention. Two drugs that inhibit HIV entry are approved for clinical use: the membrane fusion-inhibitor T20 (Fuzeon, enfuvirtide) and the C-C chemokine receptor type 5 (CCR5) blocker maraviroc (Selzentry). Another class of entry inhibitors supposedly target the fusion peptide (FP) and are termed anchor inhibitors. These include the VIRIP peptide and VIRIP derivatives such as VIR165, VIR353, and VIR576. Here, we investigated the mechanism of inhibition by VIR165. We show that substitutions within the FP modulate sensitivity to VIR165, consistent with the FP being the drug target. Our results also revealed that VIR165 acts during an intermediate post-CD4-binding entry step that is overlapping but not identical to the step inhibited by fusion inhibitors such as T20. We found that some but not all resistance mutations to heptad repeat 2 (HR2)-targeting fusion inhibitors can provide cross-resistance to VIR165. In contrast, resistance mutations in the HR1-binding site for the fusion inhibitors did not cause cross-resistance to VIR165. However, Env with mutations located outside this binding site and thought to affect fusion kinetics, exhibited decreased sensitivity to VIR165. Although we found a strong correlation between Env stability and resistance to HR2-based fusion inhibitors, such correlation was not observed for Env stability and VIR165 resistance. We conclude that VIRIP analogs target the FP during an intermediate, post-CD4-binding entry step that overlaps with but is distinct from the step(s) inhibited by HR2-based fusion inhibitors.


Subject(s)
Drug Resistance, Viral , HIV-1/physiology , Mutation , Peptide Fragments/pharmacology , Virus Internalization/drug effects , alpha 1-Antitrypsin/pharmacology , env Gene Products, Human Immunodeficiency Virus , CD4 Antigens/genetics , CD4 Antigens/metabolism , Cell Line , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Enfuvirtide/chemistry , Enfuvirtide/pharmacology , Humans , Maraviroc/chemistry , Maraviroc/pharmacology , Peptide Fragments/chemistry , Peptide Fragments/genetics , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin/genetics , env Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/metabolism
20.
Cell Rep ; 23(2): 584-595, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29642014

ABSTRACT

The heavily glycosylated native-like envelope (Env) trimer of HIV-1 is expected to have low immunogenicity, whereas misfolded forms are often highly immunogenic. High-quality correctly folded Envs may therefore be critical for developing a vaccine that induces broadly neutralizing antibodies. Moreover, the high variability of Env may require immunizations with multiple Envs. Here, we report a universal strategy that provides for correctly folded Env trimers of high quality and yield through a repair-and-stabilize approach. In the repair stage, we utilized a consensus strategy that substituted rare strain-specific residues with more prevalent ones. The stabilization stage involved structure-based design and experimental assessment confirmed by crystallographic feedback. Regions important for the refolding of Env were targeted for stabilization. Notably, the α9-helix and an intersubunit ß sheet proved to be critical for trimer stability. Our approach provides a means to produce prefusion-closed Env trimers from diverse HIV-1 strains, a substantial advance for vaccine development.


Subject(s)
HIV-1/metabolism , env Gene Products, Human Immunodeficiency Virus/metabolism , Calorimetry, Differential Scanning , Crystallography, X-Ray , HIV Antibodies/chemistry , HIV Antibodies/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Mutagenesis, Site-Directed , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Multimerization , Protein Refolding , Protein Stability , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...