Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1141669, 2023.
Article in English | MEDLINE | ID: mdl-37063262

ABSTRACT

The incidence of head and neck squamous cell carcinoma (HNSCC) is increasing and the conventional treatments for this form of cancer can be tough. Despite the success of existing immunotherapies in some HNSCC patients, many do not respond to this type of treatment. Thus, the development of novel anti-cancer therapies should be prioritized. In the current study, the anticancer activity of a panel of novel compounds, herein termed marine product mimics (MPMs), against HNSCC cell lines is explored. The previously reported compound MPM-1, which is structurally related to the novel MPMs, was shown to have promising effects on the HNSCC cell line HSC-3. The results from the current study indicate that the novel MPMs are more potent than MPM-1 but cause a similar type of cell death. The results indicated that the MPMs must cross through the cell membrane to exert their action and that they are lysosomotropic. Further experiments showed that some of the MPMs could induce phosphorylation of eukaryotic initiation factor 2α (eIF2α) in HSC-3 and UT-SCC-24A cells, which indicates that they can activate the integrated stress response that is strongly associated with immunogenic cell death. Cell surface expression of calreticulin and release of HMGB1 and ATP, which are all hallmarks of immunogenic cell death, was also demonstrated in HSC-3 and UT-SCC-24A cells treated with MPMs. This suggests that the MPMs are interesting candidates for future HNSCC cancer therapies.

2.
Eur J Med Chem ; 249: 115147, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36739750

ABSTRACT

Mimics of antimicrobial peptides (AMPs) have been proposed as a promising class of antimicrobial agents. We report the analysis of five tetrasubstituted, cationic, amphipathic heterocycles as potential AMP mimics. The analysis showed that the heterocyclic scaffold had a strong influence on the haemolytic activity of the compounds, and the hydantoin scaffold was identified as a promising template for drug lead development. Subsequently, a total of 20 hydantoin derivatives were studied for their antimicrobial potency and haemolytic activity. We found 19 of these derivatives to have very low haemolytic toxicity and identified three lead structures, 2dA, 6cG, and 6dG with very promising broad-spectrum antimicrobial activity. Lead structure 6dG displayed minimum inhibitory concentration (MIC) values as low as 1 µg/mL against Gram-positive bacteria and 4-16 µg/mL against Gram-negative bacteria. Initial mode of action (MoA) studies performed on the amine derivative 6cG, utilizing a luciferase-based biosensor assay, suggested a strong membrane disrupting effect on the outer and inner membrane of Escherichia coli. Our findings show that the physical properties and structural arrangement induced by the heterocyclic scaffolds are important factors in the design of AMP mimics.


Subject(s)
Anti-Infective Agents , Hydantoins , Hydantoins/pharmacology , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Gram-Negative Bacteria , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
3.
Eur J Med Chem ; 241: 114632, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36027613

ABSTRACT

An amphipathic barbiturate mimic of the marine eusynstyelamides is reported as a promising class of antimicrobial agents. We hereby report a detailed analysis of the structure-activity relationship for cationic amphipathic N,N'-dialkylated-5,5-disubstituted barbiturates. The influence of various cationic groups, hydrocarbon linkers and lipophilic side chains on the compounds' antimicrobial potency and haemolytic activity was studied. A comprehensive library of 58 compounds was prepared using a concise synthetic strategy. We found cationic amine and guanidyl groups to yield the highest broad-spectrum activity and cationic trimethylated quaternary amine groups to exert narrow-spectrum activity against Gram-positive bacteria. n-Propyl hydrocarbon linkers proved to be the best compromise between potency and haemolytic activity. The combination of two different lipophilic side chains allowed for further fine-tuning of the biological properties. Using these insights, we were able to prepare both, the potent narrow-spectrum barbiturate 8a and the broad-spectrum barbiturates 11lG, 13jA and 13jG, all having low or no haemolytic activity. The guanidine derivative 11lG demonstrated a strong membrane disrupting effect in luciferase-based assays. We believe that these results may be valuable in further development of antimicrobial lead structures.


Subject(s)
Anti-Infective Agents , Gram-Negative Bacteria , Amines , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Barbiturates/pharmacology , Cations/chemistry , Cations/pharmacology , Hemolysis , Humans , Microbial Sensitivity Tests , Structure-Activity Relationship
4.
J Med Chem ; 64(15): 11395-11417, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34314189

ABSTRACT

We report a series of synthetic cationic amphipathic barbiturates inspired by the pharmacophore model of small antimicrobial peptides (AMPs) and the marine antimicrobials eusynstyelamides. These N,N'-dialkylated-5,5-disubstituted barbiturates consist of an achiral barbiturate scaffold with two cationic groups and two lipophilic side chains. Minimum inhibitory concentrations of 2-8 µg/mL were achieved against 30 multi-resistant clinical isolates of Gram-positive and Gram-negative bacteria, including isolates with extended spectrum ß-lactamase-carbapenemase production. The guanidine barbiturate 7e (3,5-di-Br) demonstrated promising in vivo antibiotic efficacy in mice infected with clinical isolates of Escherichia coli and Klebsiella pneumoniae using a neutropenic peritonitis model. Mode of action studies showed a strong membrane disrupting effect and was supported by nuclear magnetic resonance and molecular dynamics simulations. The results express how the pharmacophore model of small AMPs and the structure of the marine eusynstyelamides can be used to design highly potent lead peptidomimetics against multi-resistant bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Barbiturates/pharmacology , Biological Products/pharmacology , Guanidines/pharmacology , Indoles/pharmacology , Pore Forming Cytotoxic Proteins/pharmacology , Surface-Active Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Barbiturates/chemical synthesis , Barbiturates/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Dose-Response Relationship, Drug , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/drug effects , Guanidines/chemical synthesis , Guanidines/chemistry , Indoles/chemical synthesis , Indoles/chemistry , Microbial Sensitivity Tests , Molecular Structure , Pore Forming Cytotoxic Proteins/chemical synthesis , Pore Forming Cytotoxic Proteins/chemistry , Structure-Activity Relationship , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...