Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 109(5-1): 054608, 2024 May.
Article in English | MEDLINE | ID: mdl-38907398

ABSTRACT

Monolayers of growing bacteria, confined within channel geometries, exhibit self-organization into a highly aligned laminar state along the axis of the channel. Although this phenomenon has been observed in experiments and simulations under various boundary conditions, the underlying physical mechanism driving this alignment remains unclear. In this study, we conduct simulations of growing bacteria in two-dimensional channel geometries perturbed by fixed obstacles, either circular or arc shaped, placed at the channel's center. Our findings reveal that even sizable obstacles cause only short-ranged disruptions to the baseline laminar state. These disruptions arise from a competition between local planar anchoring and bulk laminar alignment. At smaller obstacle sizes, bulk alignment fully dominates, while at larger sizes planar anchoring induces increasing local disruptions. Furthermore, our analysis indicates that the resulting configurations of the bacterial system display a striking resemblance to the arrangement of hard-rod smectic liquid crystals around circular obstacles. This suggests that modeling hard-rod bacterial monolayers as smectic, rather than nematic, liquid crystals may yield successful outcomes. The insights gained from our study contribute to the expanding body of research on bacterial growth in channels. Our work provides perspectives on the stability of the laminar state and extends our understanding to encompass more intricate confinement schemes.


Subject(s)
Models, Biological , Bacteria/metabolism , Stress, Mechanical , Stress, Physiological , Computer Simulation
2.
Soft Matter ; 19(20): 3605-3613, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37161525

ABSTRACT

Monolayers of growing non-motile rod-shaped bacteria act as active nematic materials composed of hard particles rather than the flexible components of other commonly studied active nematics. The organization of these granular monolayers has been studied on flat surfaces but not on curved surfaces, which are known to change the behavior of other active nematics. We use molecular dynamics simulations to track alignment and stress in growing monolayers fixed to curved surfaces, and investigate how these vary with changing surface curvature and cell aspect ratio. We find that the length scale of alignment (measured by average microdomain size) increases with cell aspect ratio and decreases with curvature. Additionally, we find that alignment controls the distribution of extensile stresses in the monolayer by concentrating stress in negative-order regions. These results connect active nematic physics to bacterial monolayers and can be applied to model bacteria growing on droplets, such as oil-degrading marine bacteria.


Subject(s)
Bacteria , Molecular Dynamics Simulation , Bacteria/growth & development
3.
Proc Natl Acad Sci U S A ; 116(11): 4788-4797, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30804207

ABSTRACT

We study how confinement transforms the chaotic dynamics of bulk microtubule-based active nematics into regular spatiotemporal patterns. For weak confinements in disks, multiple continuously nucleating and annihilating topological defects self-organize into persistent circular flows of either handedness. Increasing confinement strength leads to the emergence of distinct dynamics, in which the slow periodic nucleation of topological defects at the boundary is superimposed onto a fast procession of a pair of defects. A defect pair migrates toward the confinement core over multiple rotation cycles, while the associated nematic director field evolves from a distinct double spiral toward a nearly circularly symmetric configuration. The collapse of the defect orbits is punctuated by another boundary-localized nucleation event, that sets up long-term doubly periodic dynamics. Comparing experimental data to a theoretical model of an active nematic reveals that theory captures the fast procession of a pair of [Formula: see text] defects, but not the slow spiral transformation nor the periodic nucleation of defect pairs. Theory also fails to predict the emergence of circular flows in the weak confinement regime. The developed confinement methods are generalized to more complex geometries, providing a robust microfluidic platform for rationally engineering 2D autonomous flows.

4.
Phys Rev E ; 97(1-1): 012702, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29448352

ABSTRACT

Confining a liquid crystal imposes topological constraints on the orientational order, allowing global control of equilibrium systems by manipulation of anchoring boundary conditions. In this article, we investigate whether a similar strategy allows control of active liquid crystals. We study a hydrodynamic model of an extensile active nematic confined in containers, with different anchoring conditions that impose different net topological charges on the nematic director. We show that the dynamics are controlled by a complex interplay between topological defects in the director and their induced vortical flows. We find three distinct states by varying confinement and the strength of the active stress: A topologically minimal state, a circulating defect state, and a turbulent state. In contrast to equilibrium systems, we find that anchoring conditions are screened by the active flow, preserving system behavior across different topological constraints. This observation identifies a fundamental difference between active and equilibrium materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...