Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
FASEB J ; 38(2): e23442, 2024 02.
Article in English | MEDLINE | ID: mdl-38275103

ABSTRACT

The intramembrane protease γ-secretase has broad physiological functions, but also contributes to Notch-dependent tumors and Alzheimer's disease. While γ-secretase cleaves numerous membrane proteins, only few nonsubstrates are known. Thus, a fundamental open question is how γ-secretase distinguishes substrates from nonsubstrates and whether sequence-based features or post-translational modifications of membrane proteins contribute to substrate recognition. Using mass spectrometry-based proteomics, we identified several type I membrane proteins with short ectodomains that were inefficiently or not cleaved by γ-secretase, including 'pituitary tumor-transforming gene 1-interacting protein' (PTTG1IP). To analyze the mechanism preventing cleavage of these putative nonsubstrates, we used the validated substrate FN14 as a backbone and replaced its transmembrane domain (TMD), where γ-cleavage occurs, with the one of nonsubstrates. Surprisingly, some nonsubstrate TMDs were efficiently cleaved in the FN14 backbone, demonstrating that a cleavable TMD is necessary, but not sufficient for cleavage by γ-secretase. Cleavage efficiencies varied by up to 200-fold. Other TMDs, including that of PTTG1IP, were still barely cleaved within the FN14 backbone. Pharmacological and mutational experiments revealed that the PTTG1IP TMD is palmitoylated, which prevented cleavage by γ-secretase. We conclude that the TMD sequence of a membrane protein and its palmitoylation can be key factors determining substrate recognition and cleavage efficiency by γ-secretase.


Subject(s)
Amyloid Precursor Protein Secretases , Lipoylation , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Membrane Proteins/metabolism , Protein Domains , Protein Processing, Post-Translational , Amyloid beta-Protein Precursor/metabolism
2.
Int J Mol Sci ; 24(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37762696

ABSTRACT

Intramembrane proteases, such as γ secretase, typically recruit multiple substrates from an excess of single-span membrane proteins. It is currently unclear to which extent substrate recognition depends on specific interactions of their transmembrane domains (TMDs) with TMDs of a protease. Here, we investigated a large number of potential pairwise interactions between TMDs of γ secretase and a diverse set of its substrates using two different configurations of BLaTM, a genetic reporter system. Our results reveal significant interactions between TMD2 of presenilin, the enzymatic subunit of γ secretase, and the TMD of the amyloid precursor protein, as well as of several other substrates. Presenilin TMD2 is a prime candidate for substrate recruitment, as has been shown from previous studies. In addition, the amyloid precursor protein TMD enters interactions with presenilin TMD 4 as well as with the TMD of nicastrin. Interestingly, the Gly-rich interfaces between the amyloid precursor protein TMD and presenilin TMDs 2 and 4 are highly similar to its homodimerization interface. In terms of methodology, the economics of the newly developed library-based method could prove to be a useful feature in related future work for identifying heterotypic TMD-TMD interactions within other biological contexts.

3.
J Mol Biol ; 435(18): 168218, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37536392

ABSTRACT

The intramembrane protease γ-secretase activates important signaling molecules, such as Notch receptors. It is still unclear, however, how different elements within the primary structure of substrate transmembrane domains (TMDs) contribute to their cleavability. Using a newly developed yeast-based cleavage assay, we identified three crucial regions within the TMDs of the paralogs Notch1 and Notch3 by mutational and gain-of-function approaches. The AAAA or AGAV motifs within the N-terminal half of the TMDs were found to confer strong conformational flexibility to these TMD helices, as determined by mutagenesis coupled to deuterium/hydrogen exchange. Crucial amino acids within the C-terminal half may support substrate docking into the catalytic cleft of presenilin, the enzymatic subunit of γ-secretase. Further, residues close to the C-termini of the TMDs may stabilize a tripartite ß-sheet in the substrate/enzyme complex. NMR structures reveal different extents of helix bending as well as an ability to adopt widely differing conformational substates, depending on the sequence of the N-terminal half. The difference in cleavability between Notch1 and Notch3 TMDs is jointly determined by the conformational repertoires of the TMD helices and the sequences of the C-terminal half, as suggested by mutagenesis and building molecular models. In sum, cleavability of a γ-secretase substrate is enabled by different functions of cooperating TMD regions, which deepens our mechanistic understanding of substrate/non-substrate discrimination in intramembrane proteolysis.


Subject(s)
Amyloid Precursor Protein Secretases , Proteolysis , Amyloid Precursor Protein Secretases/chemistry , Models, Molecular , Mutation , Protein Domains
4.
J Biol Chem ; 299(5): 104626, 2023 05.
Article in English | MEDLINE | ID: mdl-36944398

ABSTRACT

The γ-secretase complex catalyzes the intramembrane cleavage of C99, a carboxy-terminal fragment of the amyloid precursor protein. Two paralogs of its catalytic subunit presenilin (PS1 and PS2) are expressed which are autocatalytically cleaved into an N-terminal and a C-terminal fragment during maturation of γ-secretase. In this study, we compared the efficiency and specificity of C99 cleavage by PS1- and PS2-containing γ-secretases. Mass spectrometric analysis of cleavage products obtained in cell-free and cell-based assays revealed that the previously described lower amyloid-ß (Aß)38 generation by PS2 is accompanied by a reciprocal increase in Aß37 production. We further found PS1 and PS2 to show different preferences in the choice of the initial cleavage site of C99. However, the differences in Aß38 and Aß37 generation appear to mainly result from altered subsequent stepwise cleavage of Aß peptides. Apart from these differences in cleavage specificity, we confirmed a lower efficiency of initial C99 cleavage by PS2 using a detergent-solubilized γ-secretase system. By investigating chimeric PS1/2 molecules, we show that the membrane-embedded, nonconserved residues of the N-terminal fragment mainly account for the differential cleavage efficiency and specificity of both presenilins. At the level of individual transmembrane domains (TMDs), TMD3 was identified as a major modulator of initial cleavage site specificity. The efficiency of endoproteolysis strongly depends on nonconserved TMD6 residues at the interface to TMD2, i.e., at a putative gate of substrate entry. Taken together, our results highlight the role of individual presenilin TMDs in the cleavage of C99 and the generation of Aß peptides.


Subject(s)
Amyloid Precursor Protein Secretases , Presenilin-1 , Presenilin-2 , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Presenilin-1/chemistry , Presenilin-1/genetics , Presenilin-1/metabolism , Presenilin-2/chemistry , Presenilin-2/genetics , Presenilin-2/metabolism , Protein Domains
5.
Commun Biol ; 6(1): 177, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792683

ABSTRACT

Intramembrane proteases play a pivotal role in biology and medicine, but how these proteases decode cleavability of a substrate transmembrane (TM) domain remains unclear. Here, we study the role of conformational flexibility of a TM domain, as determined by deuterium/hydrogen exchange, on substrate cleavability by γ-secretase in vitro and in cellulo. By comparing hybrid TMDs based on the natural amyloid precursor protein TM domain and an artificial poly-Leu non-substrate, we find that substrate cleavage requires conformational flexibility within the N-terminal half of the TMD helix (TM-N). Robust cleavability also requires the C-terminal TM sequence (TM-C) containing substrate cleavage sites. Since flexibility of TM-C does not correlate with cleavage efficiency, the role of the TM-C may be defined mainly by its ability to form a cleavage-competent state near the active site, together with parts of presenilin, the enzymatic component of γ-secretase. In sum, cleavability of a γ-secretase substrate appears to depend on cooperating TM domain segments, which deepens our mechanistic understanding of intramembrane proteolysis.


Subject(s)
Amyloid Precursor Protein Secretases , Amyloid beta-Protein Precursor , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Proteolysis , Protein Domains , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Catalytic Domain
6.
Sci Rep ; 12(1): 20987, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36470941

ABSTRACT

Signal-Peptide Peptidase Like-3 (SPPL3) is an intramembrane cleaving aspartyl protease that causes secretion of extracellular domains from type-II transmembrane proteins. Numerous Golgi-localized glycosidases and glucosyltransferases have been identified as physiological SPPL3 substrates. By SPPL3 dependent processing, glycan-transferring enzymes are deactivated inside the cell, as their active site-containing domain is cleaved and secreted. Thus, SPPL3 impacts on glycan patterns of many cellular and secreted proteins and can regulate protein glycosylation. However, the characteristics that make a substrate a favourable candidate for SPPL3-dependent cleavage remain unknown. To gain insights into substrate requirements, we investigated the function of a GxxxG motif located in the transmembrane domain of N-acetylglucosaminyltransferase V (GnTV), a well-known SPPL3 substrate. SPPL3-dependent secretion of the substrate's ectodomain was affected by mutations disrupting the GxxxG motif. Using deuterium/hydrogen exchange and NMR spectroscopy, we studied the effect of these mutations on the helix flexibility of the GnTV transmembrane domain and observed that increased flexibility facilitates SPPL3-dependent shedding and vice versa. This study provides first insights into the characteristics of SPPL3 substrates, combining molecular biology, biochemistry, and biophysical techniques and its results will provide the basis for better understanding the characteristics of SPPL3 substrates with implications for the substrates of other intramembrane proteases.


Subject(s)
Aspartic Acid Endopeptidases , Membrane Proteins , Aspartic Acid Endopeptidases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Golgi Apparatus/metabolism , Glycosylation , Polysaccharides/metabolism
7.
EMBO Mol Med ; 14(10): e16084, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36069059

ABSTRACT

Fn14 is a cell surface receptor with key functions in tissue homeostasis and injury but is also linked to chronic diseases. Despite its physiological and medical importance, the regulation of Fn14 signaling and turnover is only partly understood. Here, we demonstrate that Fn14 is cleaved within its transmembrane domain by the protease γ-secretase, resulting in secretion of the soluble Fn14 ectodomain (sFn14). Inhibition of γ-secretase in tumor cells reduced sFn14 secretion, increased full-length Fn14 at the cell surface, and enhanced TWEAK ligand-stimulated Fn14 signaling through the NFκB pathway, which led to enhanced release of the cytokine tumor necrosis factor. γ-Secretase-dependent sFn14 release was also detected ex vivo in primary tumor cells from glioblastoma patients, in mouse and human plasma and was strongly reduced in blood from human cancer patients dosed with a γ-secretase inhibitor prior to chimeric antigen receptor (CAR)-T-cell treatment. Taken together, our study demonstrates a novel function for γ-secretase in attenuating TWEAK/Fn14 signaling and suggests the use of sFn14 as an easily measurable pharmacodynamic biomarker to monitor γ-secretase activity in vivo.


Subject(s)
Amyloid Precursor Protein Secretases , Receptors, Chimeric Antigen , Animals , Biomarkers , Cytokine TWEAK , Humans , Ligands , Mice , Receptors, Cell Surface/metabolism , Receptors, Tumor Necrosis Factor/metabolism , TWEAK Receptor , Tumor Necrosis Factor-alpha
8.
Biochemistry ; 60(32): 2457-2462, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34314163

ABSTRACT

Green fluorescent protein (GFP) and related fluorescent proteins have multiple applications in cell biology, and elucidating their functions has been at the focus of biophysical research for about three decades. Fluorescent proteins can be bleached by intense irradiation, and a number of them undergo photoconversion. Rare cases have been reported where distant functional relatives of GFP exhibit UV-light-induced protein fragmentation. Here, we show that irreversible bleaching of two different variants of GFP (sfGFP, EGFP) with visible light is paralleled by successive backbone fragmentation of the protein. Mass spectrometry revealed that the site of fragmentation resides at the fluorophore, between residue positions 65 and 66.


Subject(s)
Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/radiation effects , Light , Proteolysis/radiation effects , Amino Acid Sequence , Color , Fluorescence , Mass Spectrometry , Peptide Fragments/chemistry
9.
iScience ; 23(12): 101775, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33294784

ABSTRACT

Ectodomain (EC) shedding defines the proteolytic removal of a membrane protein EC and acts as an important molecular switch in signaling and other cellular processes. Using tumor necrosis factor (TNF)α as a model substrate, we identify a non-canonical shedding activity of SPPL2a, an intramembrane cleaving aspartyl protease of the GxGD type. Proline insertions in the TNFα transmembrane (TM) helix strongly increased SPPL2a non-canonical shedding, while leucine mutations decreased this cleavage. Using biophysical and structural analysis, as well as molecular dynamic simulations, we identified a flexible region in the center of the TNFα wildtype TM domain, which plays an important role in the processing of TNFα by SPPL2a. This study combines molecular biology, biochemistry, and biophysics to provide insights into the dynamic architecture of a substrate's TM helix and its impact on non-canonical shedding. Thus, these data will provide the basis to identify further physiological substrates of non-canonical shedding in the future.

10.
Comput Struct Biotechnol J ; 18: 3230-3242, 2020.
Article in English | MEDLINE | ID: mdl-33209210

ABSTRACT

Interactions between their transmembrane domains (TMDs) frequently support the assembly of single-pass membrane proteins to non-covalent complexes. Yet, the TMD-TMD interactome remains largely uncharted. With a view to predicting homotypic TMD-TMD interfaces from primary structure, we performed a systematic analysis of their physical and evolutionary properties. To this end, we generated a dataset of 50 self-interacting TMDs. This dataset contains interfaces of nine TMDs from bitopic human proteins (Ire1, Armcx6, Tie1, ATP1B1, PTPRO, PTPRU, PTPRG, DDR1, and Siglec7) that were experimentally identified here and combined with literature data. We show that interfacial residues of these homotypic TMD-TMD interfaces tend to be more conserved, coevolved and polar than non-interfacial residues. Further, we suggest for the first time that interface positions are deficient in ß-branched residues, and likely to be located deep in the hydrophobic core of the membrane. Overrepresentation of the GxxxG motif at interfaces is strong, but that of (small)xxx(small) motifs is weak. The multiplicity of these features and the individual character of TMD-TMD interfaces, as uncovered here, prompted us to train a machine learning algorithm. The resulting prediction method, THOIPA (www.thoipa.org), excels in the prediction of key interface residues from evolutionary sequence data.

11.
Biochim Biophys Acta Biomembr ; 1862(11): 183438, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32781156

ABSTRACT

The fusion of lipid membranes is central to many biological processes and requires substantial structural reorganization of lipids brought about by the action of fusogenic proteins. Previous molecular dynamics simulations have suggested that splayed lipids, whose tails transiently contact the headgroup region of the bilayer, initiate lipid mixing. Here, we explore the lipid splay hypothesis experimentally. We show that the light-induced trans/cis conversion of the azobenzene-based tail of a model lipid molecule enhances the probability by which its own acyl chains, or the acyl chains of the host lipid, transiently contact the lipid headgroup in a liposomal bilayer. At the same time, the trans/cis conversion triggers lipid mixing of sonicated or extruded liposomes, without requiring fusogenic proteins. This establishes a causal relationship between lipid splay and membrane fusion.


Subject(s)
Lipid Bilayers/chemistry , Membrane Fusion , Models, Chemical
12.
Biophys J ; 119(1): 99-114, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32553128

ABSTRACT

A large fraction of soluble and membrane-bound proteins exists as non-covalent dimers, trimers, and higher-order oligomers. The experimental determination of the oligomeric state or stoichiometry of proteins remains a nontrivial challenge. In one approach, the protein of interest is genetically fused to green fluorescent protein (GFP). If a fusion protein assembles into a non-covalent oligomeric complex, exciting their GFP moiety with polarized fluorescent light elicits homotypic Förster resonance energy transfer (homo-FRET), in which the emitted radiation is partially depolarized. Fluorescence depolarization is associated with a decrease in fluorescence anisotropy that can be exploited to calculate the oligomeric state. In a classical approach, several parameters obtained through time-resolved and steady-state anisotropy measurements are required for determining the stoichiometry of the oligomers. Here, we examined novel approaches in which time-resolved measurements of reference proteins provide the parameters that can be used to interpret the less expensive steady-state anisotropy data of candidates. In one approach, we find that using average homo-FRET rates (kFRET), average fluorescence lifetimes (τ), and average anisotropies of those fluorophores that are indirectly excited by homo-FRET (rET) do not compromise the accuracy of calculated stoichiometries. In the other approach, fractional photobleaching of reference oligomers provides a novel parameter a whose dependence on stoichiometry allows one to quantitatively interpret the increase of fluorescence anisotropy seen after photobleaching the candidates. These methods can at least reliably distinguish monomers from dimers and trimers.


Subject(s)
Fluorescence Resonance Energy Transfer , Anisotropy , Fluorescence Polarization , Green Fluorescent Proteins/genetics , Photobleaching
13.
Sci Rep ; 10(1): 7223, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32332822

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Biochemistry ; 58(28): 3065-3068, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31264841

ABSTRACT

Intramembrane proteases typically cleave multiple substrates within their transmembrane domains (TMDs). Because substrate TMDs lack a consensus sequence around their scissile sites, it remains unclear how the enzyme discriminates substrates from nonsubstrates at the level of their TMDs. Here, we compare the previously well investigated TMDs of γ-secretase substrates C99 and Notch1 in terms of helix flexibility. Our results reveal that the low-stability site neigboring a functionally relevant diglycine hinge of C99 has an equivalent in the Notch1 TMD. This suggests that the tetra-alanine motif of Notch1 also functions as a hinge which may facilitate its cleavage.


Subject(s)
Amyloid beta-Protein Precursor/chemistry , Peptide Fragments/chemistry , Receptor, Notch1/chemistry , Amino Acid Sequence , Amyloid beta-Protein Precursor/genetics , Peptide Fragments/genetics , Protein Conformation , Protein Domains/genetics , Protein Structure, Secondary , Receptor, Notch1/genetics
16.
Biophys J ; 116(11): 2103-2120, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31130234

ABSTRACT

Intramembrane cleavage of the ß-amyloid precursor protein C99 substrate by γ-secretase is implicated in Alzheimer's disease pathogenesis. Biophysical data have suggested that the N-terminal part of the C99 transmembrane domain (TMD) is separated from the C-terminal cleavage domain by a di-glycine hinge. Because the flexibility of this hinge might be critical for γ-secretase cleavage, we mutated one of the glycine residues, G38, to a helix-stabilizing leucine and to a helix-distorting proline. Both mutants impaired γ-secretase cleavage and also altered its cleavage specificity. Circular dichroism, NMR, and backbone amide hydrogen/deuterium exchange measurements as well as molecular dynamics simulations showed that the mutations distinctly altered the intrinsic structural and dynamical properties of the substrate TMD. Although helix destabilization and/or unfolding was not observed at the initial ε-cleavage sites of C99, subtle changes in hinge flexibility were identified that substantially affected helix bending and twisting motions in the entire TMD. These resulted in altered orientation of the distal cleavage domain relative to the N-terminal TMD part. Our data suggest that both enhancing and reducing local helix flexibility of the di-glycine hinge may decrease the occurrence of enzyme-substrate complex conformations required for normal catalysis and that hinge mobility can thus be conducive for productive substrate-enzyme interactions.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism , Cell Membrane/metabolism , Molecular Dynamics Simulation , Proteolysis , Amino Acid Sequence , Amyloid beta-Protein Precursor/genetics , Mutation , Protein Domains
17.
Cell Rep ; 26(11): 3087-3099.e11, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30865896

ABSTRACT

Unspliced XBP1 mRNA encodes XBP1u, the transcriptionally inert variant of the unfolded protein response (UPR) transcription factor XBP1s. XBP1u targets its mRNA-ribosome-nascent-chain-complex to the endoplasmic reticulum (ER) to facilitate UPR activation and prevents overactivation. Yet, its membrane association is controversial. Here, we use cell-free translocation and cellular assays to define a moderately hydrophobic stretch in XBP1u that is sufficient to mediate insertion into the ER membrane. Mutagenesis of this transmembrane (TM) region reveals residues that facilitate XBP1u turnover by an ER-associated degradation route that is dependent on signal peptide peptidase (SPP). Furthermore, the impact of these mutations on TM helix dynamics was assessed by residue-specific amide exchange kinetics, evaluated by a semi-automated algorithm. Based on our results, we suggest that SPP-catalyzed intramembrane proteolysis of TM helices is not only determined by their conformational flexibility, but also by side-chain interactions near the scissile peptide bond with the enzyme's active site.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Intracellular Membranes/metabolism , Proteolysis , X-Box Binding Protein 1/metabolism , Endoplasmic Reticulum/metabolism , HEK293 Cells , Heme Oxygenase-1/metabolism , Humans , Mutation , Protein Domains , SEC Translocation Channels/metabolism , X-Box Binding Protein 1/chemistry , X-Box Binding Protein 1/genetics
18.
Sci Rep ; 9(1): 5321, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30926830

ABSTRACT

Cleavage of the amyloid precursor protein's (APP) transmembrane domain (TMD) by γ-secretase is a crucial step in the aetiology of Alzheimer's Disease (AD). Mutations in the APP TMD alter cleavage and lead to familial forms of AD (FAD). The majority of FAD mutations shift the preference of initial cleavage from ε49 to ε48, thus raising the AD-related Aß42/Aß40 ratio. The I45T mutation is among the few FAD mutations that do not alter ε-site preference, while it dramatically reduces the efficiency of ε-cleavage. Here, we investigate the impact of the I45T mutation on the backbone dynamics of the substrate TMD. Amide exchange experiments and molecular dynamics simulations in solvent and a lipid bilayer reveal an increased stability of amide hydrogen bonds at the ζ- and γ-cleavage sites. Stiffening of the H-bond network is caused by an additional H-bond between the T45 side chain and the TMD backbone, which alters dynamics within the cleavage domain. In particular, the increased H-bond stability inhibits an upward movement of the ε-sites in the I45T mutant. Thus, an altered presentation of ε-sites to the active site of γ-secretase as a consequence of restricted local flexibility provides a rationale for reduced ε-cleavage efficiency of the I45T mutant.


Subject(s)
Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/chemistry , Amyloid beta-Peptides/chemistry , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/genetics , Hydrogen Bonding , Mutation , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Models, Molecular , Protein Conformation , Protein Stability
19.
J Phys Chem Lett ; 9(12): 3181-3186, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29799756

ABSTRACT

The fusion of biological membranes may require splayed lipids whose tails transiently visit the headgroup region of the bilayer, a scenario suggested by molecular dynamics simulations. Here, we examined the lipid splay hypothesis experimentally by relating liposome fusion and lipid splay induced by model transmembrane domains (TMDs). Our results reveal that a conformationally flexible transmembrane helix promotes outer leaflet mixing and lipid splay more strongly than a conformationally rigid one. The lipid dependence of basal as well as of TMD-driven lipid mixing and splay suggests that the cone-shaped phosphatidylethanolamine stimulates basal fusion via enhancing lipid splay and that the negatively charged phosphatidylserine inhibits fusion via electrostatic repulsion. Phosphatidylserine also strongly differentiates basal and helix-driven fusion, which is related to its preferred interaction with the conformationally more flexible transmembrane helix. Thus, the contribution of a transmembrane helix to membrane fusion appears to depend on lipid binding, which results in lipid splay.


Subject(s)
Lipid Bilayers/metabolism , Liposomes/metabolism , Lipid Bilayers/chemistry , Liposomes/chemistry , Membrane Fusion , Peptides/chemistry , Peptides/metabolism , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylserines/chemistry
20.
Biochemistry ; 57(8): 1326-1337, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29389107

ABSTRACT

Flexible transmembrane helices frequently support the conformational transitions between different functional states of membrane proteins. While proline is well known to distort and destabilize transmembrane helices, the role of glycine is still debated. Here, we systematically investigated the effect of glycine on transmembrane helix flexibility by placing it at different sites within the otherwise uniform leucine/valine repeat sequence of the LV16 model helix. We show that amide deuterium/hydrogen exchange kinetics are increased near glycine. Molecular dynamics simulations reproduce the measured exchange kinetics and reveal, at atomic resolution, a severe packing defect at glycine that enhances local hydration. Furthermore, glycine alters H-bond occupancies and triggers a redistribution of α-helical and 310-helical H-bonds. These effects facilitate local helix bending at the glycine site and change the collective dynamics of the helix.


Subject(s)
Glycine/chemistry , Membrane Proteins/chemistry , Peptides/chemistry , Amino Acid Sequence , Hydrogen Bonding , Kinetics , Molecular Dynamics Simulation , Protein Conformation , Protein Conformation, alpha-Helical , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL