Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 322(1): 351-7, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18405910

ABSTRACT

Activated carbons remove waterborne bacteria from potable water systems through attractive Lifshitz-van der Waals forces despite electrostatic repulsion between negatively charged cells and carbon surfaces. In this paper we quantify the interaction forces between bacteria with negatively and positively charged, mesoporous wood-based carbons, as well as with a microporous coconut carbon. To this end, we glued carbon particles to the cantilever of an atomic force microscope and measured the interaction forces upon approach and retraction of thus made tips. Waterborne Raoultella terrigena and Escherichia coli adhered weakly (1-2 nN) to different activated carbon particles, and the main difference between the activated carbons was the percentage of curves with attractive sites revealed upon traversing of a carbon particle through the bacterial EPS layer. The percentage of curves showing adhesion forces upon retraction varied between 21% and 69%, and was highest for R. terrigena with positively charged carbon (66%) and a coconut carbon (69%). Macroscopic bacterial removal by the mesoporous carbon particles increased with increasing percentages of attractive sites revealed upon traversing a carbon particle through the outer bacterial surface layer.


Subject(s)
Bacterial Adhesion/drug effects , Charcoal/pharmacology , Enterobacteriaceae/drug effects , Escherichia coli/drug effects , Water Microbiology , Water Purification/methods , Adsorption , Animals , Bacterial Adhesion/physiology , Enterobacteriaceae/metabolism , Escherichia coli/metabolism , Microscopy, Atomic Force , Particle Size , Surface Properties
2.
Biotechnol Bioeng ; 100(4): 810-3, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18351669

ABSTRACT

In rural areas around the world, people often rely on water filtration plants using activated carbon particles for safe water supply. Depending on the carbon surface, adhering microorganisms die or grow to form a biofilm. Assays to assess the efficacy of activated carbons in bacterial removal do not allow direct observation of bacterial adhesion and the determination of viability. Here we propose to use a parallel plate flow chamber with carbon particles attached to the bottom plate to study bacterial adhesion to individual carbon particles and determine the viability of adhering bacteria. Observation and enumeration is done after live/dead staining in a confocal laser scanning microscope. Escherichiae coli adhered in higher numbers than Raoultella terrigena, except to a coconut-based carbon, which showed low bacterial adhesion compared to other wood-based carbon types. After adhesion, 83-96% of the bacteria adhering to an acidic carbon were dead, while on a basic carbon 54-56% were dead. A positively charged, basic carbon yielded 76-78% bacteria dead, while on a negatively charged coconut-based carbon only 32-37% were killed upon adhesion. The possibility to determine both adhesion as well as the viability of adhering bacteria upon adhesion to carbon particles is most relevant, because if bacteria adhere but remain viable, this still puts the water treatment system at risk, as live bacteria can grow and form a biofilm that can then be shedded to cause contamination.


Subject(s)
Bacteria/chemistry , Bacteria/cytology , Bacterial Adhesion , Carbon/chemistry , Adhesiveness , Bacterial Adhesion/drug effects , Biofilms/growth & development , Cocos/chemistry , Colony Count, Microbial , Osmolar Concentration , Static Electricity , Waste Disposal, Fluid/methods , Water Microbiology , Water Purification/methods
3.
Biotechnol Bioeng ; 99(1): 165-9, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17570712

ABSTRACT

The attachment of waterborne pathogens onto surfaces can be increased by coating the surfaces with positive charge-enhancing polymers. In this paper, the increased efficacy of polydiallyldimethylammonium chloride (p-DADMAC) coatings on glass was evaluated in a parallel plate flow chamber with the use of waterborne pathogens (Raoultella terrigena, Escherichia coli, and Brevundimonas diminuta). p-DADMAC coatings strongly compensated the highly negative charges on the glass surface and even yielded a positively charged surface when applied from a 500 ppm solution. Whereas none of the strains adhered from water to glass due to electrostatic repulsion, R. terrigena and E. coli readily adhered in high numbers to p-DADMAC coated glass slides applied from 1, 100, or 500 ppm aqueous solutions. B. diminuta only adhered to a positively charged p-DADMAC coating applied from a 500 ppm solution. In addition, all p-DADMAC coatings indicated strong contact killing with the bacterial species used in this study by live/dead staining techniques. In summary, this paper demonstrates the potential of p-DADMAC coatings to strongly enhance bacterial adhesion. Moreover, once adhered, bacterial viability can be reduced by the positively charged ammonium groups in the coating.


Subject(s)
Allyl Compounds/chemistry , Bacterial Adhesion/physiology , Coated Materials, Biocompatible/chemistry , Quaternary Ammonium Compounds/chemistry , Water Microbiology , Cell Survival , Materials Testing , Surface Properties
4.
Environ Sci Technol ; 40(21): 6799-804, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-17144313

ABSTRACT

Waterborne diseases constitute a threat to public health despite costly treatment measures aimed at removing pathogenic microorganisms from potable water supplies. This paper compared the removal of Raoultella terrigena ATCC 33257 and Escherichia coli ATCC 25922 by negatively and positively charged types of activated carbon particles. Both strains display bimodal negative zeta-potential distributions in stabilized water. Carbon particles were suspended to an equivalent external geometric surface area of 700 cm2 in 250 mL of a bacterial suspension, with shaking. Samples were taken after different durations for plate counting. Initial removal rates were less elevated for the positively charged carbon particle than expected, yielding the conclusion that bacterial adhesion under shaking is mass-transport limited. After 360 min, however, the log-reduction of the more negatively charged R. terrigena in suspension was largest for the positively charged carbon particles as compared with the negatively charged ones, although conditioning in ultrapure or tap water of positively charged carbon particles for 21 days eliminated the favorable effect of the positive charge due to counterion adsorption from the water. Removal of the less negatively charged E. coli was less affected by aging of the (positively charged) carbon particles, confirming the role of electrostatic interactions in bacterial removal by activated carbon particles. The microporous, negatively charged coconut carbon performed less than the mesoporous, positively charged carbon particle prior to conditioning but did not suffer from loss of effect after conditioning in ultrapure or tap water.


Subject(s)
Bacteria/metabolism , Escherichia coli/metabolism , Water Purification/methods , Bacterial Adhesion , Carbon/chemistry , Cocos , Diatomaceous Earth/chemistry , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Surface Properties , Time Factors , Water , Water Supply
5.
J Water Health ; 1(2): 73-84, 2003 Jun.
Article in English | MEDLINE | ID: mdl-15382736

ABSTRACT

Contamination of drinking water by microorganisms and arsenic represents a major human health hazard in many parts of the world. An estimated 3.4 million deaths a year are attributable to waterborne diseases. Arsenic poisoning from contaminated water sources is causing a major health emergency in some countries such as Bangladesh where 35 to 77 million people are at risk. The World Health Organization (WHO) has recently recognized point-of-use water treatment as an effective means of reducing illness in developing country households. A new point-of-use water treatment system that is based on flocculation, sedimentation and disinfection was evaluated for the removal of bacterial, viral and parasitic pathogens as well as arsenic from drinking water to estimate its potential for use in developing countries. Tests were conducted with United States Environmental Protection Agency (EPA)-model and field- sample waters from developing countries. Samples were seeded with known numbers of organisms, treated with the combined flocculation/disinfection product, and assayed for survivors using standard assay techniques appropriate for the organism. Results indicated that this treatment system reduced the levels from 10(8)/l to undetectable (<1) of 14 types of representative waterborne bacterial pathogens including Salmonella typhi and Vibrio cholerae. No Escherichia coli were detected post-treatment in 320 field water samples collected from five developing countries. In addition, the water treatment system reduced polio and rotavirus titres by greater than 4-log values. Cyrptosporidium parvum and Giardia lamblia inocula were reduced by greater than 3-log values following use of this water treatment system. Arsenic, added to laboratory test waters, was reduced by 99.8%, and naturally occurring arsenic in field samples from highly contaminated Bangladeshi wells was reduced by 99.5% to mean levels of 1.2 microg/l. This water treatment system has demonstrated the potential to provide improved drinking water to households in developing countries by removing microbial and arsenic contaminants.


Subject(s)
Arsenic/isolation & purification , Developing Countries , Fresh Water/chemistry , Primary Prevention/methods , Water Pollutants, Chemical/isolation & purification , Water Purification , Bacteria/isolation & purification , Communicable Disease Control/methods , Environmental Monitoring/methods , Humans , Risk Assessment , United States , Viruses/isolation & purification , Water Microbiology , Water Purification/instrumentation , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...