Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39257772

ABSTRACT

The Lamiaceae (mint family) is the largest known source of furanoclerodanes, a subset of clerodane diterpenoids with broad bioactivities including insect antifeedant properties. The Ajugoideae subfamily, in particular, accumulates significant numbers of structurally related furanoclerodanes. The biosynthetic capacity for formation of these diterpenoids is retained across most Lamiaceae subfamilies, including the early-diverging Callicarpoideae which forms a sister clade to the rest of Lamiaceae. VacCYP76BK1, a cytochrome P450 monooxygenase from Vitex agnus-castus, was previously found to catalyze the formation of the proposed precursor to furan and lactone-containing labdane diterpenoids. Through transcriptome-guided pathway exploration, we identified orthologs of VacCYP76BK1 in Ajuga reptans and Callicarpa americana. Functional characterization demonstrated that both could catalyze the oxidative cyclization of clerodane backbones to yield a furan ring. Subsequent investigation revealed a total of ten CYP76BK1 orthologs across six Lamiaceae subfamilies. Through analysis of available chromosome-scale genomes, we identified four CYP76BK1 members as syntelogs within a conserved syntenic block across divergent subfamilies. This suggests an evolutionary lineage that predates the speciation of the Lamiaceae. Functional characterization of the CYP76BK1 orthologs affirmed conservation of function, as all catalyzed furan ring formation. Additionally, some orthologs yielded two novel lactone ring moieties. The presence of the CYP76BK1 orthologs across Lamiaceae subfamilies closely overlaps with the distribution of reported furanoclerodanes. Together, the activities and distribution of the CYP76BK1 orthologs identified here support their central role in furanoclerodane biosynthesis within the Lamiaceae family. Our findings lay the groundwork for biotechnological applications to harness the economic potential of this promising class of compounds.

2.
Plant J ; 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39276373

ABSTRACT

The Lamiaceae (mint family) is the largest known source of furanoclerodanes, a subset of clerodane diterpenoids with broad bioactivities including insect antifeedant properties. The Ajugoideae subfamily, in particular, accumulates significant numbers of structurally related furanoclerodanes. The biosynthetic capacity for formation of these diterpenoids is retained across most Lamiaceae subfamilies, including the early-diverging Callicarpoideae which forms a sister clade to the rest of Lamiaceae. VacCYP76BK1, a cytochrome P450 monooxygenase from Vitex agnus-castus, was previously found to catalyze the formation of the proposed precursor to furan and lactone-containing labdane diterpenoids. Through transcriptome-guided pathway exploration, we identified orthologs of VacCYP76BK1 in Ajuga reptans and Callicarpa americana. Functional characterization demonstrated that both could catalyze the oxidative cyclization of clerodane backbones to yield a furan ring. Subsequent investigation revealed a total of 10 CYP76BK1 orthologs across six Lamiaceae subfamilies. Through analysis of available chromosome-scale genomes, we identified four CYP76BK1 members as syntelogs within a conserved syntenic block across divergent subfamilies. This suggests an evolutionary lineage that predates the speciation of the Lamiaceae. Functional characterization of the CYP76BK1 orthologs affirmed conservation of function, as all catalyzed furan ring formation. Additionally, some orthologs yielded two novel lactone ring moieties. The presence of the CYP76BK1 orthologs across Lamiaceae subfamilies closely overlaps with the distribution of reported furanoclerodanes. Together, the activities and distribution of the CYP76BK1 orthologs identified here support their central role in furanoclerodane biosynthesis within the Lamiaceae family. Our findings lay the groundwork for biotechnological applications to harness the economic potential of this promising class of compounds.

3.
Plant J ; 114(5): 1178-1201, 2023 06.
Article in English | MEDLINE | ID: mdl-36891828

ABSTRACT

From the perspectives of pathway evolution, discovery and engineering of plant specialized metabolism, the nature of the biosynthetic routes represents a critical aspect. Classical models depict biosynthesis typically from an end-point angle and as linear, for example, connecting central and specialized metabolism. As the number of functionally elucidated routes increased, the enzymatic foundation of complex plant chemistries became increasingly well understood. The perception of linear pathway models has been severely challenged. With a focus on plant terpenoid specialized metabolism, we review here illustrative examples supporting that plants have evolved complex networks driving chemical diversification. The completion of several diterpene, sesquiterpene and monoterpene routes shows complex formation of scaffolds and their subsequent functionalization. These networks show that branch points, including multiple sub-routes, mean that metabolic grids are the rule rather than the exception. This concept presents significant implications for biotechnological production.


Subject(s)
Alkyl and Aryl Transferases , Diterpenes , Sesquiterpenes , Phylogeny , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Diterpenes/metabolism , Plants/genetics , Plants/metabolism , Sesquiterpenes/metabolism , Terpenes/metabolism , Plant Proteins/metabolism
4.
Nat Commun ; 14(1): 343, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36670101

ABSTRACT

The spatial organization of genes within plant genomes can drive evolution of specialized metabolic pathways. Terpenoids are important specialized metabolites in plants with diverse adaptive functions that enable environmental interactions. Here, we report the genome assemblies of Prunella vulgaris, Plectranthus barbatus, and Leonotis leonurus. We investigate the origin and subsequent evolution of a diterpenoid biosynthetic gene cluster (BGC) together with other seven species within the Lamiaceae (mint) family. Based on core genes found in the BGCs of all species examined across the Lamiaceae, we predict a simplified version of this cluster evolved in an early Lamiaceae ancestor. The current composition of the extant BGCs highlights the dynamic nature of its evolution. We elucidate the terpene backbones generated by the Callicarpa americana BGC enzymes, including miltiradiene and the terpene (+)-kaurene, and show oxidization activities of BGC cytochrome P450s. Our work reveals the fluid nature of BGC assembly and the importance of genome structure in contributing to the origin of metabolites.


Subject(s)
Diterpenes , Lamiaceae , Lamiaceae/genetics , Lamiaceae/metabolism , Diterpenes/metabolism , Terpenes/metabolism , Multigene Family , Biosynthetic Pathways/genetics
5.
Gigascience ; 9(9)2020 09 01.
Article in English | MEDLINE | ID: mdl-32893861

ABSTRACT

BACKGROUND: Plants exhibit wide chemical diversity due to the production of specialized metabolites that function as pollinator attractants, defensive compounds, and signaling molecules. Lamiaceae (mints) are known for their chemodiversity and have been cultivated for use as culinary herbs, as well as sources of insect repellents, health-promoting compounds, and fragrance. FINDINGS: We report the chromosome-scale genome assembly of Callicarpa americana L. (American beautyberry), a species within the early-diverging Callicarpoideae clade of Lamiaceae, known for its metallic purple fruits and use as an insect repellent due to its production of terpenoids. Using long-read sequencing and Hi-C scaffolding, we generated a 506.1-Mb assembly spanning 17 pseudomolecules with N50 contig and N50 scaffold sizes of 7.5 and 29.0 Mb, respectively. In all, 32,164 genes were annotated, including 53 candidate terpene synthases and 47 putative clusters of specialized metabolite biosynthetic pathways. Our analyses revealed 3 putative whole-genome duplication events, which, together with local tandem duplications, contributed to gene family expansion of terpene synthases. Kolavenyl diphosphate is a gateway to many of the bioactive terpenoids in C. americana; experimental validation confirmed that CamTPS2 encodes kolavenyl diphosphate synthase. Syntenic analyses with Tectona grandis L. f. (teak), a member of the Tectonoideae clade of Lamiaceae known for exceptionally strong wood resistant to insects, revealed 963 collinear blocks and 21,297 C. americana syntelogs. CONCLUSIONS: Access to the C. americana genome provides a road map for rapid discovery of genes encoding plant-derived agrichemicals and a key resource for understanding the evolution of chemical diversity in Lamiaceae.


Subject(s)
Callicarpa , Insect Repellents , Lamiaceae , Chromosomes , Lamiaceae/genetics , Terpenes
6.
Plant J ; 104(3): 693-705, 2020 11.
Article in English | MEDLINE | ID: mdl-32777127

ABSTRACT

Serrulatane diterpenoids are natural products found in plants from a subset of genera within the figwort family (Scrophulariaceae). Many of these compounds have been characterized as having anti-microbial properties and share a common diterpene backbone. One example, leubethanol from Texas sage (Leucophyllum frutescens) has demonstrated activity against multi-drug-resistant tuberculosis. Leubethanol is the only serrulatane diterpenoid identified from this genus; however, a range of such compounds have been found throughout the closely related Eremophila genus. Despite their potential therapeutic relevance, the biosynthesis of serrulatane diterpenoids has not been previously reported. Here we leverage the simple product profile and high accumulation of leubethanol in the roots of L. frutescens and compare tissue-specific transcriptomes with existing data from Eremophila serrulata to decipher the biosynthesis of leubethanol. A short-chain cis-prenyl transferase (LfCPT1) first produces the rare diterpene precursor nerylneryl diphosphate, which is cyclized by an unusual plastidial terpene synthase (LfTPS1) into the characteristic serrulatane diterpene backbone. Final conversion to leubethanol is catalyzed by a cytochrome P450 (CYP71D616) of the CYP71 clan. This pathway documents the presence of a short-chain cis-prenyl diphosphate synthase, previously only found in Solanaceae, which is likely involved in the biosynthesis of other known diterpene backbones in Eremophila. LfTPS1 represents neofunctionalization of a compartment-switching terpene synthase accepting a novel substrate in the plastid. Biosynthetic access to leubethanol will enable pathway discovery to more complex serrulatane diterpenoids which share this common starting structure and provide a platform for the production and diversification of this class of promising anti-microbial therapeutics in heterologous systems.


Subject(s)
Diterpenes/metabolism , Scrophulariaceae/metabolism , Alkyl and Aryl Transferases/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Eremophila Plant/genetics , Escherichia coli/genetics , Neoprene/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Plants, Genetically Modified , Polyisoprenyl Phosphates/metabolism , Scrophulariaceae/genetics , Nicotiana/genetics , Nicotiana/metabolism , Transferases/genetics , Transferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL