Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Elife ; 122024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635416

ABSTRACT

Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/ß. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.


Subject(s)
AIRE Protein , DNA Transposable Elements , Mice , Humans , Animals , Thymus Gland/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Thymocytes/metabolism , Epithelial Cells/metabolism , Cell Differentiation/genetics , Mice, Inbred C57BL
2.
Leukemia ; 38(5): 1019-1031, 2024 May.
Article in English | MEDLINE | ID: mdl-38627586

ABSTRACT

The hypomethylating agent 5-azacytidine (AZA) is the first-line treatment for AML patients unfit for intensive chemotherapy. The effect of AZA results in part from T-cell cytotoxic responses against MHC-I-associated peptides (MAPs) deriving from hypermethylated genomic regions such as cancer-testis antigens (CTAs), or endogenous retroelements (EREs). However, evidence supporting higher ERE MAPs presentation after AZA treatment is lacking. Therefore, using proteogenomics, we examined the impact of AZA on the repertoire of MAPs and their source transcripts. AZA-treated AML upregulated both CTA and ERE transcripts, but only CTA MAPs were presented at greater levels. Upregulated ERE transcripts triggered innate immune responses against double-stranded RNAs but were degraded by autophagy, and not processed into MAPs. Autophagy resulted from the formation of protein aggregates caused by AZA-dependent inhibition of DNMT2. Autophagy inhibition had an additive effect with AZA on AML cell proliferation and survival, increased ERE levels, increased pro-inflammatory responses, and generated immunogenic tumor-specific ERE-derived MAPs. Finally, autophagy was associated with a lower abundance of CD8+ T-cell markers in AML patients expressing high levels of EREs. This work demonstrates that AZA-induced EREs are degraded by autophagy and shows that inhibiting autophagy can improve the immune recognition of AML blasts in treated patients.


Subject(s)
Antimetabolites, Antineoplastic , Autophagy , Azacitidine , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Azacitidine/pharmacology , Autophagy/drug effects , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , DNA Methylation/drug effects , Cell Proliferation , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology
3.
J Clin Invest ; 134(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37906288

ABSTRACT

Hormone receptor-positive breast cancer (HR+) is immunologically cold and has not benefited from advances in immunotherapy. In contrast, subsets of triple-negative breast cancer (TNBC) display high leukocytic infiltration and respond to checkpoint blockade. CD8+ T cells, the main effectors of anticancer responses, recognize MHC I-associated peptides (MAPs). Our work aimed to characterize the repertoire of MAPs presented by HR+ and TNBC tumors. Using mass spectrometry, we identified 57,094 unique MAPs in 26 primary breast cancer samples. MAP source genes highly overlapped between both subtypes. We identified 25 tumor-specific antigens (TSAs) mainly deriving from aberrantly expressed regions. TSAs were most frequently identified in TNBC samples and were more shared among The Cancer Genome Atlas (TCGA) database TNBC than HR+ samples. In the TNBC cohort, the predicted number of TSAs positively correlated with leukocytic infiltration and overall survival, supporting their immunogenicity in vivo. We detected 49 tumor-associated antigens (TAAs), some of which derived from cancer-associated fibroblasts. Functional expansion of specific T cell assays confirmed the in vitro immunogenicity of several TSAs and TAAs. Our study identified attractive targets for cancer immunotherapy in both breast cancer subtypes. The higher prevalence of TSAs in TNBC tumors provides a rationale for their responsiveness to checkpoint blockade.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Antigens, Neoplasm/genetics , Immunotherapy/methods , CD8-Positive T-Lymphocytes/pathology
4.
J Proteome Res ; 22(5): 1492-1500, 2023 05 05.
Article in English | MEDLINE | ID: mdl-36961377

ABSTRACT

Proteomic diversity in biological samples can be characterized by mass spectrometry (MS)-based proteomics using customized protein databases generated from sets of transcripts previously detected by RNA-seq. This diversity has only been increased by the recent discovery that many translated alternative open reading frames rest unannotated at unsuspected locations of mRNAs and ncRNAs. These novel protein products, termed alternative proteins, have been left out of all previous custom database generation tools. Consequently, genetic variations that impact alternative open reading frames and variant peptides from their translated proteins are not detectable with current computational workflows. To fill this gap, we present OpenCustomDB, a bioinformatics tool that uses sample-specific RNaseq data to identify genomic variants in canonical and alternative open reading frames, allowing for more than one coding region per transcript. In a test reanalysis of a cohort of 16 patients with acute myeloid leukemia, 5666 peptides from alternative proteins were detected, including 201 variant peptides. We also observed that a significant fraction of peptide-spectrum matches previously assigned to peptides from canonical proteins got better scores when reassigned to peptides from alternative proteins. Custom protein libraries that include sample-specific sequence variations of all possible open reading frames are promising contributions to the development of proteomics and precision medicine. The raw and processed proteomics data presented in this study can be found in PRIDE repository with accession number PXD029240.


Subject(s)
Proteins , Proteomics , Humans , Proteomics/methods , Databases, Protein , Open Reading Frames , Proteins/genetics , Peptides/genetics , Peptides/analysis
5.
Cell Rep ; 40(7): 111241, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35977509

ABSTRACT

Previous reports showed that mouse vaccination with pluripotent stem cells (PSCs) induces durable anti-tumor immune responses via T cell recognition of some elusive oncofetal epitopes. We characterize the MHC I-associated peptide (MAP) repertoire of human induced PSCs (iPSCs) using proteogenomics. Our analyses reveal a set of 46 pluripotency-associated MAPs (paMAPs) absent from the transcriptome of normal tissues and adult stem cells but expressed in PSCs and multiple adult cancers. These paMAPs derive from coding and allegedly non-coding (48%) transcripts involved in pluripotency maintenance, and their expression in The Cancer Genome Atlas samples correlates with source gene hypomethylation and genomic aberrations common across cancer types. We find that several of these paMAPs were immunogenic. However, paMAP expression in tumors coincides with activation of pathways instrumental in immune evasion (WNT, TGF-ß, and CDK4/6). We propose that currently available inhibitors of these pathways could synergize with immune targeting of paMAPs for the treatment of poorly differentiated cancers.


Subject(s)
Induced Pluripotent Stem Cells , Neoplasms , Pluripotent Stem Cells , Animals , Histocompatibility Antigens Class I/metabolism , Humans , Mice , Neoplasms/metabolism , Peptides/metabolism , Pluripotent Stem Cells/metabolism
6.
Cancer Lett ; 543: 215765, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35680072

ABSTRACT

Neuroendocrine tumors constitute a heterogeneous group of tumors arising from hormone-secreting cells and are generally associated with a dysfunction of secretion. Pheochromocytoma (Pheo) is a neuroendocrine tumor that develops from chromaffin cells of the adrenal medulla, and is responsible for an excess of catecholamine secretion leading to severe clinical symptoms such as hypertension, elevated stroke risk and various cardiovascular complications. Surprisingly, while the hypersecretory activity of Pheo is well known to pathologists and clinicians, it has never been carefully explored at the cellular and molecular levels. In the present study, we have combined catecholamine secretion measurement by carbon fiber amperometry on human tumor cells directly cultured from freshly resected Pheos, with the analysis by mass spectrometry of the exocytotic proteins differentially expressed between the tumor and the matched adjacent non-tumor tissue. In most patients, catecholamine secretion recordings from single Pheo cells revealed a higher number of exocytic events per cell associated with faster kinetic parameters. Accordingly, we unravel significant tumor-associated modifications in the expression of key proteins involved in different steps of the calcium-regulated exocytic pathway. Altogether, our findings indicate that dysfunction of the calcium-regulated exocytosis at the level of individual Pheo cell is a cause of the tumor-associated hypersecretion of catecholamines.


Subject(s)
Adrenal Gland Neoplasms , Adrenal Medulla , Pheochromocytoma , Adrenal Gland Neoplasms/metabolism , Adrenal Medulla/metabolism , Calcium , Calcium, Dietary , Catecholamines/metabolism , Exocytosis , Humans , Pheochromocytoma/metabolism
7.
Mol Cell Proteomics ; 21(5): 100228, 2022 05.
Article in English | MEDLINE | ID: mdl-35367648

ABSTRACT

Colorectal cancer is the second leading cause of cancer death worldwide, and the incidence of this disease is expected to increase as global socioeconomic changes occur. Immune checkpoint inhibition therapy is effective in treating a minority of colorectal cancer tumors; however, microsatellite stable tumors do not respond well to this treatment. Emerging cancer immunotherapeutic strategies aim to activate a cytotoxic T cell response against tumor-specific antigens, presented exclusively at the cell surface of cancer cells. These antigens are rare and are most effectively identified with a mass spectrometry-based approach, which allows the direct sampling and sequencing of these peptides. Although the few tumor-specific antigens identified to date are derived from coding regions of the genome, recent findings indicate that a large proportion of tumor-specific antigens originate from allegedly noncoding regions. Here, we employed a novel proteogenomic approach to identify tumor antigens in a collection of colorectal cancer-derived cell lines and biopsy samples consisting of matched tumor and normal adjacent tissue. The generation of personalized cancer databases paired with mass spectrometry analyses permitted the identification of more than 30,000 unique MHC I-associated peptides. We identified 19 tumor-specific antigens in both microsatellite stable and unstable tumors, over two-thirds of which were derived from noncoding regions. Many of these peptides were derived from source genes known to be involved in colorectal cancer progression, suggesting that antigens from these genes could have therapeutic potential in a wide range of tumors. These findings could benefit the development of T cell-based vaccines, in which T cells are primed against these antigens to target and eradicate tumors. Such a vaccine could be used in tandem with existing immune checkpoint inhibition therapies, to bridge the gap in treatment efficacy across subtypes of colorectal cancer with varying prognoses. Data are available via ProteomeXchange with identifier PXD028309.


Subject(s)
Colorectal Neoplasms , Microsatellite Instability , Antigens, Neoplasm/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Histocompatibility Antigens Class I/genetics , Humans , Immune Checkpoint Inhibitors , Immunotherapy/methods , Peptides/genetics
8.
Mol Cell Proteomics ; 21(1): 100178, 2022 01.
Article in English | MEDLINE | ID: mdl-34798331

ABSTRACT

MS-based immunopeptidomics is maturing into an automatized and high-throughput technology, producing small- to large-scale datasets of clinically relevant major histocompatibility complex (MHC) class I-associated and class II-associated peptides. Consequently, the development of quality control (QC) and quality assurance systems capable of detecting sample and/or measurement issues is important for instrument operators and scientists in charge of downstream data interpretation. Here, we created MhcVizPipe (MVP), a semiautomated QC software tool that enables rapid and simultaneous assessment of multiple MHC class I and II immunopeptidomic datasets generated by MS, including datasets generated from large sample cohorts. In essence, MVP provides a rapid and consolidated view of sample quality, composition, and MHC specificity to greatly accelerate the "pass-fail" QC decision-making process toward data interpretation. MVP parallelizes the use of well-established immunopeptidomic algorithms (NetMHCpan, NetMHCIIpan, and GibbsCluster) and rapidly generates organized and easy-to-understand reports in HTML format. The reports are fully portable and can be viewed on any computer with a modern web browser. MVP is intuitive to use and will find utility in any specialized immunopeptidomic laboratory and proteomics core facility that provides immunopeptidomic services to the community.


Subject(s)
Histocompatibility Antigens Class I , Software , Peptides , Proteomics , Quality Control
9.
Immunity ; 54(4): 737-752.e10, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33740418

ABSTRACT

Acute myeloid leukemia (AML) has not benefited from innovative immunotherapies, mainly because of the lack of actionable immune targets. Using an original proteogenomic approach, we analyzed the major histocompatibility complex class I (MHC class I)-associated immunopeptidome of 19 primary AML samples and identified 58 tumor-specific antigens (TSAs). These TSAs bore no mutations and derived mainly (86%) from supposedly non-coding genomic regions. Two AML-specific aberrations were instrumental in the biogenesis of TSAs, intron retention, and epigenetic changes. Indeed, 48% of TSAs resulted from intron retention and translation, and their RNA expression correlated with mutations of epigenetic modifiers (e.g., DNMT3A). AML TSA-coding transcripts were highly shared among patients and were expressed in both blasts and leukemic stem cells. In AML patients, the predicted number of TSAs correlated with spontaneous expansion of cognate T cell receptor clonotypes, accumulation of activated cytotoxic T cells, immunoediting, and improved survival. These TSAs represent attractive targets for AML immunotherapy.


Subject(s)
Epitopes/genetics , Histocompatibility Antigens Class I/genetics , Leukemia, Myeloid, Acute/genetics , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cell Line , Epigenesis, Genetic/genetics , Epigenesis, Genetic/immunology , Epitopes/immunology , Histocompatibility Antigens Class I/immunology , Humans , Immunotherapy/methods , Leukemia, Myeloid, Acute/immunology , Mice , Mice, Inbred NOD , Mice, SCID , Mutation/genetics , Mutation/immunology , Neoplastic Stem Cells/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Cytotoxic/immunology
10.
Cell Rep ; 34(10): 108815, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33691108

ABSTRACT

Combining RNA sequencing, ribosome profiling, and mass spectrometry, we elucidate the contribution of non-canonical translation to the proteome and major histocompatibility complex (MHC) class I immunopeptidome. Remarkably, of 14,498 proteins identified in three human B cell lymphomas, 2,503 are non-canonical proteins. Of these, 28% are novel isoforms and 72% are cryptic proteins encoded by ostensibly non-coding regions (60%) or frameshifted canonical genes (12%). Cryptic proteins are translated as efficiently as canonical proteins, have more predicted disordered residues and lower stability, and critically generate MHC-I peptides 5-fold more efficiently per translation event. Translating 5' "untranslated" regions hinders downstream translation of genes involved in transcription, translation, and antiviral responses. Novel protein isoforms show strong enrichment for signaling pathways deregulated in cancer. Only a small fraction of cryptic proteins detected in the proteome contribute to the MHC-I immunopeptidome, demonstrating the high preferential access of cryptic defective ribosomal products to the class I pathway.


Subject(s)
Proteome/metabolism , Cell Line, Tumor , Chromatography, High Pressure Liquid , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Open Reading Frames/genetics , Protein Isoforms/metabolism , Proteome/analysis , Ribosomes/metabolism , Sequence Analysis, RNA , Signal Transduction/genetics , Tandem Mass Spectrometry
11.
Cancer Discov ; 10(12): 1968-1987, 2020 12.
Article in English | MEDLINE | ID: mdl-32967858

ABSTRACT

Glycine 34-to-tryptophan (G34W) substitutions in H3.3 arise in approximately 90% of giant cell tumor of bone (GCT). Here, we show H3.3 G34W is necessary for tumor formation. By profiling the epigenome, transcriptome, and secreted proteome of patient samples and tumor-derived cells CRISPR-Cas9-edited for H3.3 G34W, we show that H3.3K36me3 loss on mutant H3.3 alters the deposition of the repressive H3K27me3 mark from intergenic to genic regions, beyond areas of H3.3 deposition. This promotes redistribution of other chromatin marks and aberrant transcription, altering cell fate in mesenchymal progenitors and hindering differentiation. Single-cell transcriptomics reveals that H3.3 G34W stromal cells recapitulate a neoplastic trajectory from a SPP1+ osteoblast-like progenitor population toward an ACTA2+ myofibroblast-like population, which secretes extracellular matrix ligands predicted to recruit and activate osteoclasts. Our findings suggest that H3.3 G34W leads to GCT by sustaining a transformed state in osteoblast-like progenitors, which promotes neoplastic growth, pathologic recruitment of giant osteoclasts, and bone destruction. SIGNIFICANCE: This study shows that H3.3 G34W drives GCT tumorigenesis through aberrant epigenetic remodeling, altering differentiation trajectories in mesenchymal progenitors. H3.3 G34W promotes in neoplastic stromal cells an osteoblast-like progenitor state that enables undue interactions with the tumor microenvironment, driving GCT pathogenesis. These epigenetic changes may be amenable to therapeutic targeting in GCT.See related commentary by Licht, p. 1794.This article is highlighted in the In This Issue feature, p. 1775.


Subject(s)
Bone Neoplasms/genetics , Giant Cell Tumor of Bone/genetics , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Cell Differentiation , Humans
12.
Anal Chem ; 92(13): 9194-9204, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32502341

ABSTRACT

Defining the repertoire of peptides presented by the major histocompatibility complex class I (MHC I) is a key step toward the identification of relevant antigens for cancer immunotherapy. However, the identification of cancer-specific antigens is a significant analytical challenge in view of their low abundance and low mutational load found in most primary cancer specimens. Here, we describe the application of isobaric peptide labeling with tandem mass tag (TMT) to improve the detection of the MHC I peptides. Isobaric peptide labeling was found to promote the formation of multiply charged ions and to enhance the formation of b-type fragment ions, thus resulting in a 50% improvement of MHC I peptide identification. The gain in sensitivity obtained using TMT labeling enabled the detection of low-abundance MHC I peptides including tumor-specific antigens (TSAs) and minor histocompatibility antigens (MiHAs). We further demonstrate the application of this approach to quantify MiHAs presented by B-cell lymphocytes and determined their expression levels by LC-MS/MS using both synchronous precursor selection (SPS) and high-field asymmetric waveform ion mobility spectrometry (FAIMS).


Subject(s)
Histocompatibility Antigens Class I/metabolism , Molecular Probes/chemistry , Peptides/analysis , Tandem Mass Spectrometry/methods , Animals , Antibodies/immunology , Cell Line, Tumor , Chromatography, High Pressure Liquid , Histocompatibility Antigens Class I/immunology , Humans , Immunoprecipitation , Ion Mobility Spectrometry , Mice , Mice, Inbred NOD , Peptides/chemistry , Succinimides/chemistry , Transplantation, Heterologous
13.
Cancer Immunol Res ; 8(4): 544-555, 2020 04.
Article in English | MEDLINE | ID: mdl-32047025

ABSTRACT

High-grade serous ovarian cancer (HGSC), the principal cause of death from gynecologic malignancies in the world, has not significantly benefited from advances in cancer immunotherapy. Although HGSC infiltration by lymphocytes correlates with superior survival, the nature of antigens that can elicit anti-HGSC immune responses is unknown. The goal of this study was to establish the global landscape of HGSC tumor-specific antigens (TSA) using a mass spectrometry pipeline that interrogated all reading frames of all genomic regions. In 23 HGSC tumors, we identified 103 TSAs. Classic TSA discovery approaches focusing only on mutated exonic sequences would have uncovered only three of these TSAs. Other mutated TSAs resulted from out-of-frame exonic translation (n = 2) or from noncoding sequences (n = 7). One group of TSAs (n = 91) derived from aberrantly expressed unmutated genomic sequences, which were not expressed in normal tissues. These aberrantly expressed TSAs (aeTSA) originated primarily from nonexonic sequences, in particular intronic (29%) and intergenic (22%) sequences. Their expression was regulated at the transcriptional level by variations in gene copy number and DNA methylation. Although mutated TSAs were unique to individual tumors, aeTSAs were shared by a large proportion of HGSCs. Taking into account the frequency of aeTSA expression and HLA allele frequencies, we calculated that, in Caucasians, the median number of aeTSAs per tumor would be five. We conclude that, in view of their number and the fact that they are shared by many tumors, aeTSAs may be the most attractive targets for HGSC immunotherapy.


Subject(s)
Antigens, Neoplasm/analysis , Biomarkers, Tumor/analysis , Cystadenocarcinoma, Serous/pathology , Immunotherapy/methods , Mutation , Ovarian Neoplasms/pathology , Proteogenomics/methods , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Female , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism
14.
Sci Transl Med ; 10(470)2018 12 05.
Article in English | MEDLINE | ID: mdl-30518613

ABSTRACT

Tumor-specific antigens (TSAs) represent ideal targets for cancer immunotherapy, but few have been identified thus far. We therefore developed a proteogenomic approach to enable the high-throughput discovery of TSAs coded by potentially all genomic regions. In two murine cancer cell lines and seven human primary tumors, we identified a total of 40 TSAs, about 90% of which derived from allegedly noncoding regions and would have been missed by standard exome-based approaches. Moreover, most of these TSAs derived from nonmutated yet aberrantly expressed transcripts (such as endogenous retroelements) that could be shared by multiple tumor types. Last, we demonstrated that, in mice, the strength of antitumor responses after TSA vaccination was influenced by two parameters that can be estimated in humans and could serve for TSA prioritization in clinical studies: TSA expression and the frequency of TSA-responsive T cells in the preimmune repertoire. In conclusion, the strategy reported herein could considerably facilitate the identification and prioritization of actionable human TSAs.


Subject(s)
Antigens, Neoplasm/metabolism , DNA, Intergenic/genetics , Neoplasms/genetics , Neoplasms/immunology , Amino Acid Sequence , Animals , Cell Line, Tumor , Humans , Immunization , Interferon-gamma/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Peptides/chemistry , Protein Biosynthesis , Proteogenomics , T-Lymphocytes/immunology
15.
Proteomics ; 18(12): e1700251, 2018 06.
Article in English | MEDLINE | ID: mdl-29508533

ABSTRACT

Significant technological advances in both affinity chromatography and mass spectrometry have facilitated the identification of peptides associated with the major histocompatibility complex class I (MHC I) molecules, and enabled a greater understanding of the dynamic nature of the immunopeptidome of normal and neoplastic cells. While the isolation of MHC I-associated peptides (MIPs) typically used mild acid elution (MAE) or immunoprecipitation (IP), limited information currently exists regarding their respective analytical merits. Here, a comparison of these approaches for the isolation of two different B-cell lymphoblast cell models is presented, and it is reported on the recovery, reproducibility, scalability, and complementarity of identification from each method. Both approaches yielded reproducible datasets for peptide extracts obtained from 2 to 100 million cells, with 2016 to 5093 MIPs, respectively. The IP typically provides up to 6.4-fold increase in MIPs compared to the MAE. The comprehensiveness of these immunopeptidome analyses is extended using personalized genomic database of B-cell lymphoblasts, and it is discovered that 0.4% of their respective MIP repertoire harbored nonsynonymous single nucleotide variations (also known as minor histocompatibility antigens, MiHAs).


Subject(s)
Acids/chemistry , B-Lymphocytes/metabolism , Histocompatibility Antigens Class I/isolation & purification , Immunoprecipitation/methods , Peptide Fragments/isolation & purification , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Adult , Animals , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Cells, Cultured , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Peptide Fragments/immunology , Peptide Fragments/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
16.
Endocr Relat Cancer ; 23(4): 281-93, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26911374

ABSTRACT

Among small GTPases from the Rho family, Cdc42, RAC, and Rho are well known to mediate a large variety of cellular processes linked with cancer biology through their ability to cycle between an inactive (GDP-bound) and an active (GTP-bound) state. Guanine nucleotide exchange factors (GEFs) stimulate the exchange of GDP for GTP to generate the activated form, whereas the GTPase-activating proteins (GAPs) catalyze GTP hydrolysis, leading to the inactivated form. Modulation of Rho GTPase activity following altered expression of RHO-GEFs and/or RHO-GAPs has already been reported in various human tumors. However, nothing is known about the Rho GTPase activity or the expression of their regulators in human pheochromocytomas, a neuroendocrine tumor (NET) arising from chromaffin cells of the adrenal medulla. In this study, we demonstrate, through an ELISA-based activity assay, that Rac1 and Cdc42 activities decrease in human pheochromocytomas (PCCs) compared with the matched adjacent non-tumor tissue. Furthermore, through quantitative mass spectrometry (MS) approaches, we show that the expression of two RHO-GEF proteins, namely ARHGEF1 and FARP1, is significantly reduced in tumors compared with matched non-tumor tissue, whereas ARHGAP36 expression is increased. Moreover, siRNA-based knockdown of ARHGEF1 and FARP1 in PC12 cells leads to a significant inhibition of Rac1 and Cdc42 activities, respectively. Finally, a principal component analysis (PCA) of our dataset was able to discriminate PCC from non-tumor tissue and indicates a close correlation between Cdc42/Rac1 activity and FARP1/ARHGEF1 expression. Altogether, our findings reveal for the first time the importance of modulation of Rho GTPase activities and expression of their regulators in human PCCs.


Subject(s)
Adrenal Gland Neoplasms/metabolism , Pheochromocytoma/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/metabolism , Animals , Humans , PC12 Cells , RNA, Small Interfering/genetics , Rats , Rho Guanine Nucleotide Exchange Factors/genetics
17.
Prog Histochem Cytochem ; 46(1): 1-48, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21536318

ABSTRACT

The endoplasmic reticulum (ER) is a highly dynamic organelle. It is composed of four subcompartments including nuclear envelope (NE), rough ER (rER), smooth ER (sER) and transitional ER (tER). The subcompartments are interconnected, can fragment and dissociate and are able to reassemble again. They coordinate with cell function by way of protein regulators in the surrounding cytosol. The activity of the many associated molecular machines of the ER as well as the fluid nature of the limiting membrane of the ER contribute extensively to the dynamics of the ER. This review examines the properties of the ER that permit its isolation and purification and the physiological conditions that permit reconstitution both in vitro and in vivo in normal and in disease conditions.


Subject(s)
Endoplasmic Reticulum, Rough/ultrastructure , Endoplasmic Reticulum, Smooth/ultrastructure , Endoplasmic Reticulum/physiology , Endoplasmic Reticulum/ultrastructure , Nuclear Envelope/ultrastructure , Animals , Cell Fractionation , Cytoskeleton/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum, Rough/metabolism , Endoplasmic Reticulum, Rough/physiology , Endoplasmic Reticulum, Smooth/metabolism , Endoplasmic Reticulum, Smooth/physiology , Humans , Intracellular Membranes/metabolism , Intracellular Membranes/physiology , Intracellular Membranes/ultrastructure , Membrane Fusion , Microtubules/metabolism , Microtubules/ultrastructure , Nuclear Envelope/metabolism , Nuclear Envelope/physiology , Organelles/metabolism , Organelles/physiology , Ribosomes/metabolism , Ribosomes/physiology , Ribosomes/ultrastructure , Subcellular Fractions
18.
Biochim Biophys Acta ; 1804(9): 1869-81, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20576523

ABSTRACT

The transitional endoplasmic reticulum (tER) is composed of both rough and smooth ER membranes and thus participates in functions attributed to both these two subcellular compartments. In this paper we have compared the protein composition of tER isolated from dissected liver tumor nodules of aflatoxin B1-treated rats with that of tER from control liver. Tandem mass spectrometry (MS), peptide counts and immunoblot validation were used to identify and determine the relative expression level of proteins. Inhibitors of apoptosis (i.e. PGRMC1, tripeptidyl peptidase II), proteins involved in ribosome biogenesis (i.e. nucleophosmin, nucleolin), proteins involved in translation (i.e. eEF-2, and subunits of eIF-3), proteins involved in ubiquitin metabolism (i.e. proteasome subunits, USP10) and proteins involved in membrane traffic (i.e. SEC13-like 1, SEC23B, dynactin 1) were found overexpressed in tumor tER. Transcription factors (i.e. Pur-beta, BTF3) and molecular targets for C-Myc and NF-kappa B were observed overexpressed in tER from tumor nodules. Down-regulated proteins included cytochrome P450 proteins and enzymes involved in fatty acid metabolism and in steroid metabolism. Unexpectedly expression of the protein folding machinery (i.e. calreticulin) and proteins of the MHC class I peptide-loading complex did not change. Proteins of unknown function were detected in association with the tER and the novel proteins showing differential expression are potential new tumor markers. In many cases differential expression of proteins in tumor tER was comparable to that of corresponding genes reported in the Oncomine human database. Thus the molecular profile of tumor tER is different and this may confer survival advantage to tumor cells in cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/metabolism , Endoplasmic Reticulum/metabolism , Liver Neoplasms/metabolism , Organelles/metabolism , Proteome/analysis , Aflatoxin B1/toxicity , Animals , Carcinoma, Hepatocellular/chemically induced , Endoplasmic Reticulum/ultrastructure , Humans , Liver Neoplasms/chemically induced , Male , Poisons/toxicity , Rats , Rats, Inbred F344 , Tandem Mass Spectrometry
19.
Expert Opin Med Diagn ; 2(5): 475-85, 2008 May.
Article in English | MEDLINE | ID: mdl-23495737

ABSTRACT

BACKGROUND: Pathological conditions can be reflected, as well as propagated, by changes in the expression patterns of secreted proteins. Protein secretion may occur by signal sequence dependent or independent mechanisms and many secreted proteins with desirable biomarker characteristics appear to be low abundance proteins in body fluids. Both factors complicate disease-associated secreted protein discovery. OBJECTIVE: To enhance the discovery of low abundance, physiologically relevant, plasma protein biomarkers. METHODS: Biomarker discovery has been performed in media, body fluids or tissue homogenates. A comparative analysis of the contents of secretory vesicles isolated directly from affected tissues or model systems substantially improves the detection of relevant, low abundance plasma biomarkers. RESULTS: Evidence supporting this approach is provided from pilot experiments in prostate cancer.

20.
Clin Cancer Res ; 12(14 Pt 1): 4178-84, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16857789

ABSTRACT

PURPOSE: To isolate human prostatic epithelial plasma membranes for the identification of cell surface proteins in the therapeutic targeting of cancer cells while permitting the retrieval of banked samples for clinical purposes. EXPERIMENTAL DESIGN: Radical prostatectomies from 84 patients (median, 61 years; prostate-specific antigen, 5.9; 66% nonpalpable) were processed with alternate, mirror image slices submitted for histology and tissue banking. Benign and malignant foci were macrodissected from the banked sections using the pathologically mapped, mirror image histology sections as a guide. Epithelial plasma membranes were isolated using novel immunomagnetic purification and their purity was assessed. Tissue homogenates were probed by Western blot for malignant (AMACR) and benign (p63) markers to test the accuracy of this protocol. Selected banked tissue slices were retrieved, thawed, and compared pathologically to their corresponding routinely processed alternate slices. RESULTS: Plasma membrane preparations showed the enrichment of epithelial plasma membrane markers (prostate-specific membrane antigen and epithelial-specific antigen) with minimal marker expression from nonepithelial cells or intracellular organelles. Cancer homogenates showed up-regulated AMACR and down-regulated p63, whereas benign homogenates showed up-regulated p63 and down-regulated AMACR. There was 30% benign (p63+) contamination in cancer slices and <6% cancer (AMACR+) contamination in benign slices. Retrieved tissues showed the retention of immunoreactivity while their histology was always adequate for diagnosis. CONCLUSIONS: We have successfully isolated purified epithelial plasma membranes from benign and malignant human prostates and provided validation data for the accuracy of our protocol in a prostate-specific antigen-screened cohort. Our method also enabled the retrieval of banked tissues for clinical purposes with the retention of good histologic and immunohistochemical quality.


Subject(s)
Cell Membrane/metabolism , Epithelium/metabolism , Gene Expression Regulation, Neoplastic , Prostatectomy/methods , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/surgery , Aged , Humans , Immunohistochemistry/methods , Male , Middle Aged , Prostate/metabolism , Prostate-Specific Antigen/biosynthesis , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...