Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Mov Disord ; 38(7): 1197-1208, 2023 07.
Article in English | MEDLINE | ID: mdl-37195859

ABSTRACT

BACKGROUND: Loss-of-function mutations in the GBA1 gene are one of the most common genetic risk factors for onset of Parkinson's disease and subsequent progression (GBA-PD). GBA1 encodes the lysosomal enzyme glucocerebrosidase (GCase), a promising target for a possible first disease-modifying therapy. LTI-291 is an allosteric activator of GCase, which increases the activity of normal and mutant forms of GCase. OBJECTIVES: This first-in-patient study evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics of 28 daily doses of LTI-291 in GBA-PD. METHODS: This was a randomized, double-blind, placebo-controlled trial in 40 GBA-PD participants. Twenty-eight consecutive daily doses of 10, 30, or 60 mg of LTI-291 or placebo were administered (n = 10 per treatment allocation). Glycosphingolipid (glucosylceramide and lactosylceramide) levels were measured in peripheral blood mononuclear cells (PBMCs), plasma, and cerebrospinal fluid (CSF), and a test battery of neurocognitive tasks, the Movement Disorder Society-Unified Parkinson's Disease Rating Scale and the Mini-Mental State Exam, were performed. RESULTS: LTI-291 was generally well tolerated, no deaths or treatment-related serious adverse events occurred, and no participants withdrew due to adverse events. Cmax , and AUC0-6 of LTI-291 increased in a dose-proportional manner, with free CSF concentrations equal to the free fraction in plasma. A treatment-related transient increase in intracellular glucosylceramide (GluCer) in PBMCs was measured. CONCLUSION: These first-in-patient studies demonstrated that LTI-291 was well tolerated when administered orally for 28 consecutive days to patients with GBA-PD. Plasma and CSF concentrations that are considered pharmacologically active were reached (ie, sufficient to at least double GCase activity). Intracellular GluCer elevations were detected. Clinical benefit will be assessed in a larger long-term trial in GBA-PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Glucosylceramidase/genetics , Leukocytes, Mononuclear , Glucosylceramides/therapeutic use , Double-Blind Method , Mutation
2.
Mov Disord ; 38(5): 783-795, 2023 05.
Article in English | MEDLINE | ID: mdl-36916660

ABSTRACT

BACKGROUND: Molecules related to glucocerebrosidase (GCase) are potential biomarkers for development of compounds targeting GBA1-associated Parkinson's disease (GBA-PD). OBJECTIVES: Assessing variability of various glycosphingolipids (GSLs) in plasma, peripheral blood mononuclear cells (PBMCs), and cerebrospinal fluid (CSF) across GBA-PD, idiopathic PD (iPD), and healthy volunteers (HVs). METHODS: Data from five studies were combined. Variability was assessed of glucosylceramide (various isoforms), lactosylceramide (various isoforms), glucosylsphingosine, galactosylsphingosine, GCase activity (using fluorescent 4-methylumbeliferryl-ß-glucoside), and GCase protein (using enzyme-linked immunosorbent assay) in plasma, PBMCs, and CSF if available, in GBA-PD, iPD, and HVs. GSLs in leukocyte subtypes were compared in HVs. Principal component analysis was used to explore global patterns in GSLs, clinical characteristics (Movement Disorder Society - Unified Parkinson's Disease Rating Scale Part 3 [MDS-UPDRS-3], Mini-Mental State Examination [MMSE], GBA1 mutation type), and participant status (GBA-PD, iPD, HVs). RESULTS: Within-subject between-day variability ranged from 5.8% to 44.5% and was generally lower in plasma than in PBMCs. Extracellular glucosylceramide levels (plasma) were slightly higher in GBA-PD compared with both iPD and HVs, while intracellular levels were comparable. GSLs in the different matrices (plasma, PBMCs, CSF) did not correlate. Both lactosylceramide and glucosylsphingosine were more abundant in granulocytes compared with monocytes and lymphocytes. Absolute levels of GSL isoforms differed greatly. GBA1 mutation types could not be differentiated based on GSL data. CONCLUSIONS: Glucosylceramide can stably be measured over days in both plasma and PBMCs and may be used as a biomarker in clinical trials targeting GBA-PD. Glucosylsphingosine and lactosylceramide are stable in plasma but are strongly affected by leukocyte subtypes in PBMCs. GBA-PD could be differentiated from iPD and HVs, primarily based on glucosylceramide levels in plasma. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Lactosylceramides , Leukocytes, Mononuclear/metabolism , Glucosylceramides , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Antigens, CD , Mutation
4.
Mol Neurodegener ; 17(1): 54, 2022 08 20.
Article in English | MEDLINE | ID: mdl-35987691

ABSTRACT

BACKGROUND: Amyloid plaque deposition and axonal degeneration are early events in AD pathogenesis. Aß disrupts microtubules in presynaptic dystrophic neurites, resulting in the accumulation of impaired endolysosomal and autophagic organelles transporting ß-site amyloid precursor protein cleaving enzyme (BACE1). Consequently, dystrophic neurites generate Aß42 and significantly contribute to plaque deposition. Farnesyltransferase inhibitors (FTIs) have recently been investigated for repositioning toward the treatment of neurodegenerative disorders and block the action of farnesyltransferase (FTase) to catalyze farnesylation, a post-translational modification that regulates proteins involved in lysosome function and microtubule stability. In postmortem AD brains, FTase and its downstream signaling are upregulated. However, the impact of FTIs on amyloid pathology and dystrophic neurites is unknown. METHODS: We tested the effects of the FTIs LNK-754 and lonafarnib in the 5XFAD mouse model of amyloid pathology. RESULTS: In 2-month-old 5XFAD mice treated chronically for 3 months, LNK-754 reduced amyloid plaque burden, tau hyperphosphorylation, and attenuated the accumulation of BACE1 and LAMP1 in dystrophic neurites. In 5-month-old 5XFAD mice treated acutely for 3 weeks, LNK-754 reduced dystrophic neurite size and LysoTracker-Green accumulation in the absence of effects on Aß deposits. Acute treatment with LNK-754 improved memory and learning deficits in hAPP/PS1 amyloid mice. In contrast to LNK-754, lonafarnib treatment was less effective at reducing plaques, tau hyperphosphorylation and dystrophic neurites, which could have resulted from reduced potency against FTase compared to LNK-754. We investigated the effects of FTIs on axonal trafficking of endolysosomal organelles and found that lonafarnib and LNK-754 enhanced retrograde axonal transport in primary neurons, indicating FTIs could support the maturation of axonal late endosomes into lysosomes. Furthermore, FTI treatment increased levels of LAMP1 in mouse primary neurons and in the brains of 5XFAD mice, demonstrating that FTIs stimulated the biogenesis of endolysosomal organelles. CONCLUSIONS: We show new data to suggest that LNK-754 promoted the axonal trafficking and function of endolysosomal compartments, which we hypothesize decreased axonal dystrophy, reduced BACE1 accumulation and inhibited amyloid deposition in 5XFAD mice. Our results agree with previous work identifying FTase as a therapeutic target for treating proteinopathies and could have important therapeutic implications in treating AD.


Subject(s)
Amyloid , Amyloidosis , Farnesyltranstransferase , Alzheimer Disease/metabolism , Amyloid/drug effects , Amyloid/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloidogenic Proteins/metabolism , Amyloidosis/metabolism , Amyloidosis/pathology , Animals , Aspartic Acid Endopeptidases/metabolism , Axons/drug effects , Axons/pathology , Disease Models, Animal , Farnesyltranstransferase/antagonists & inhibitors , Farnesyltranstransferase/metabolism , Mice , Mice, Transgenic , Plaque, Amyloid/pathology
5.
Mov Disord ; 37(3): 651, 2022 03.
Article in English | MEDLINE | ID: mdl-35040206

Subject(s)
Decision Making , Humans
6.
NPJ Parkinsons Dis ; 7(1): 65, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34312398

ABSTRACT

With the advent of the genetic era in Parkinson's disease (PD) research in 1997, α-synuclein was identified as an important player in a complex neurodegenerative disease that affects >10 million people worldwide. PD has been estimated to have an economic impact of $51.9 billion in the US alone. Since the initial association with PD, hundreds of researchers have contributed to elucidating the functions of α-synuclein in normal and pathological states, and these remain critical areas for continued research. With this position paper the authors strive to achieve two goals: first, to succinctly summarize the critical features that define α-synuclein's varied roles, as they are known today; and second, to identify the most pressing knowledge gaps and delineate a multipronged strategy for future research with the goal of enabling therapies to stop or slow disease progression in PD.

7.
Br J Clin Pharmacol ; 87(9): 3561-3573, 2021 09.
Article in English | MEDLINE | ID: mdl-33576113

ABSTRACT

AIMS: A mutation in the GBA1 gene is the most common genetic risk factor for developing Parkinson's disease. GBA1 encodes the lysosomal enzyme glucosylceramidase beta (glucocerebrosidase, GCase) and mutations decrease enzyme activity. LTI-291 is an allosteric modulator of GCase, enhancing its activity. These first-in-human studies evaluated the safety, tolerability, pharmacokinetics and pharmacodynamics of single and multiple ascending doses of LTI-291 in healthy volunteers. METHODS: In the single ascending dose (SAD) study, 40 healthy volunteers were randomly assigned to LTI-291 (n = 8 per dose level) or placebo (n = 2 per dose level). Single doses of 3, 10, 30 and 90 mg LTI-291 were investigated. In the multiple ascending dose (MAD) study, 40 healthy middle-aged or elderly volunteers were randomly assigned to LTI-291 (n = 8 per dose level) or placebo (n = 2 per dose level). Fourteen consecutive daily doses of 3, 10, 30 and 60 mg LTI-291 or placebo were administered. In both the SAD and MAD studies, glycosphingolipid levels were measured and a test battery of neurocognitive tasks was performed. RESULTS: LTI-291 was generally well tolerated and no deaths or treatment-related SAEs occurred and no subject withdrew from a study due to AEs. Cmax , AUC0-24 and AUC0-inf increased in a dose proportional manner. The median half-life was 28.0 hours after multiple dosing. No dose-dependent glycosphingolipid changes occurred. No neurocognitive adverse effects were detected. CONCLUSIONS: These first-in-human studies demonstrated that LTI-291 was well tolerated when given orally once daily for 14 consecutive days. This supports the continued clinical development and the exploration of LTI-291 effects in a GBA1-mutated Parkinson population.


Subject(s)
Glucosylceramidase , Parkinson Disease , Aged , Area Under Curve , Dose-Response Relationship, Drug , Double-Blind Method , Glucosylceramidase/genetics , Healthy Volunteers , Humans , Middle Aged
8.
Sci Rep ; 11(1): 161, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420335

ABSTRACT

A variant in the GBA1 gene is one of the most common genetic risk factors to develop Parkinson's disease (PD). Here the serendipitous finding is reported of a polymerase dependent allelic imbalance when using next generation sequencing, potentially resulting in false-negative results when the allele frequency falls below the variant calling threshold (by default commonly at 30%). The full GBA1 gene was sequenced using next generation sequencing on saliva derived DNA from PD patients. Four polymerase chain reaction conditions were varied in twelve samples, to investigate the effect on allelic imbalance: (1) the primers (n = 4); (2) the polymerase enzymes (n = 2); (3) the primer annealing temperature (Ta) specified for the used polymerase; and (4) the amount of DNA input. Initially, 1295 samples were sequenced using Q5 High-Fidelity DNA Polymerase. 112 samples (8.6%) had an exonic variant and an additional 104 samples (8.0%) had an exonic variant that did not pass the variant frequency calling threshold of 30%. After changing the polymerase to TaKaRa LA Taq DNA Polymerase Hot-Start Version: RR042B, all samples had an allele frequency passing the calling threshold. Allele frequency was unaffected by a change in primer, annealing temperature or amount of DNA input. Sequencing of the GBA1 gene using next generation sequencing might be susceptible to a polymerase specific allelic imbalance, which can result in a large amount of flase-negative results. This was resolved in our case by changing the polymerase. Regions displaying low variant calling frequencies in GBA1 sequencing output in previous and future studies might warrant additional scrutiny.


Subject(s)
Allelic Imbalance , Glucosylceramidase/genetics , Parkinson Disease/genetics , Exons , Glucosylceramidase/metabolism , Humans , Parkinson Disease/enzymology , Parkinson Disease/metabolism , Polymerase Chain Reaction , Sequence Analysis, DNA
9.
J Med Chem ; 63(24): 15821-15851, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33290061

ABSTRACT

Acid ceramidase (AC) is a cysteine hydrolase that plays a crucial role in the metabolism of lysosomal ceramides, important members of the sphingolipid family, a diversified class of bioactive molecules that mediate many biological processes ranging from cell structural integrity, signaling, and cell proliferation to cell death. In the effort to expand the structural diversity of the existing collection of AC inhibitors, a novel class of substituted oxazol-2-one-3-carboxamides were designed and synthesized. Herein, we present the chemical optimization of our initial hits, 2-oxo-4-phenyl-N-(4-phenylbutyl)oxazole-3-carboxamide 8a and 2-oxo-5-phenyl-N-(4-phenylbutyl)oxazole-3-carboxamide 12a, which resulted in the identification of 5-[4-fluoro-2-(1-methyl-4-piperidyl)phenyl]-2-oxo-N-pentyl-oxazole-3-carboxamide 32b as a potent AC inhibitor with optimal physicochemical and metabolic properties, showing target engagement in human neuroblastoma SH-SY5Y cells and a desirable pharmacokinetic profile in mice, following intravenous and oral administration. 32b enriches the arsenal of promising lead compounds that may therefore act as useful pharmacological tools for investigating the potential therapeutic effects of AC inhibition in relevant sphingolipid-mediated disorders.


Subject(s)
Acid Ceramidase/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemical synthesis , Oxazolone/chemistry , Acid Ceramidase/metabolism , Administration, Oral , Animals , Binding Sites , Cell Line, Tumor , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Half-Life , Humans , Inhibitory Concentration 50 , Kinetics , Male , Mice , Mice, Inbred C57BL , Microsomes/metabolism , Molecular Docking Simulation , Oxazolone/metabolism , Oxazolone/pharmacokinetics , Solubility , Structure-Activity Relationship
10.
Mov Disord ; 35(9): 1667-1674, 2020 09.
Article in English | MEDLINE | ID: mdl-32618053

ABSTRACT

BACKGROUND: The most common genetic risk factor for Parkinson's disease known is a damaging variant in the GBA1 gene. The entire GBA1 gene has rarely been studied in a large cohort from a single population. The objective of this study was to assess the entire GBA1 gene in Parkinson's disease from a single large population. METHODS: The GBA1 gene was assessed in 3402 Dutch Parkinson's disease patients using next-generation sequencing. Frequencies were compared with Dutch controls (n = 655). Family history of Parkinson's disease was compared in carriers and noncarriers. RESULTS: Fifteen percent of patients had a GBA1 nonsynonymous variant (including missense, frameshift, and recombinant alleles), compared with 6.4% of controls (OR, 2.6; P < 0.001). Eighteen novel variants were detected. Variants previously associated with Gaucher's disease were identified in 5.0% of patients compared with 1.5% of controls (OR, 3.4; P < 0.001). The rarely reported complex allele p.D140H + p.E326K appears to likely be a Dutch founder variant, found in 2.4% of patients and 0.9% of controls (OR, 2.7; P = 0.012). The number of first-degree relatives (excluding children) with Parkinson's disease was higher in p.D140H + p.E326K carriers (5.6%, 21 of 376) compared with p.E326K carriers (2.9%, 29 of 1014); OR, 2.0; P = 0.022, suggestive of a dose effect for different GBA1 variants. CONCLUSIONS: Dutch Parkinson's disease patients display one of the largest frequencies of GBA1 variants reported so far, consisting in large part of the mild p.E326K variant and the more severe Dutch p.D140H + p.E326K founder allele. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Gaucher Disease , Parkinson Disease , Child , Glucosylceramidase/genetics , Humans , Mutation/genetics , Netherlands/epidemiology , Parkinson Disease/genetics
11.
J Med Chem ; 63(7): 3634-3664, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32176488

ABSTRACT

Sphingolipids (SphLs) are a diverse class of molecules that are regulated by a complex network of enzymatic pathways. A disturbance in these pathways leads to lipid accumulation and initiation of several SphL-related disorders. Acid ceramidase is one of the key enzymes that regulate the metabolism of ceramides and glycosphingolipids, which are important members of the SphL family. Herein, we describe the lead optimization studies of benzoxazolone carboxamides resulting in piperidine 22m, where we demonstrated target engagement in two animal models of neuropathic lysosomal storage diseases (LSDs), Gaucher's and Krabbe's diseases. After daily intraperitoneal administration at 90 mg kg-1, 22m significantly reduced the brain levels of the toxic lipids glucosylsphingosine (GluSph) in 4L;C* mice and galactosylsphingosine (GalSph) in Twitcher mice. We believe that 22m is a lead molecule that can be further developed for the correction of severe neurological LSDs where GluSph or GalSph play a significant role in disease pathogenesis.


Subject(s)
Acid Ceramidase/antagonists & inhibitors , Benzoxazoles/pharmacology , Enzyme Inhibitors/pharmacology , Administration, Oral , Animals , Benzoxazoles/administration & dosage , Benzoxazoles/chemical synthesis , Benzoxazoles/pharmacokinetics , Brain/metabolism , Cell Line, Tumor , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Female , Gaucher Disease/enzymology , Gaucher Disease/metabolism , Humans , Leukodystrophy, Globoid Cell/enzymology , Leukodystrophy, Globoid Cell/metabolism , Male , Mice , Molecular Structure , Psychosine/analogs & derivatives , Psychosine/metabolism , Structure-Activity Relationship
12.
Neuron ; 104(5): 869-884.e11, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31648898

ABSTRACT

Age-related neurodegenerative disorders are characterized by a slow, persistent accumulation of aggregated proteins. Although cells can elicit physiological responses to enhance cellular clearance and counteract accumulation, it is unclear how pathogenic proteins evade this process in disease. We find that Parkinson's disease α-synuclein perturbs the physiological response to lysosomal stress by impeding the SNARE protein ykt6. Cytosolic ykt6 is normally autoinhibited by a unique farnesyl-mediated regulatory mechanism; however, during lysosomal stress, it activates and redistributes into membranes to preferentially promote hydrolase trafficking and enhance cellular clearance. α-Synuclein aberrantly binds and deactivates ykt6 in patient-derived neurons, thereby disabling the lysosomal stress response and facilitating protein accumulation. Activating ykt6 by small-molecule farnesyltransferase inhibitors restores lysosomal activity and reduces α-synuclein in patient-derived neurons and mice. Our findings indicate that α-synuclein creates a permissive environment for aggregate persistence by inhibiting regulated cellular clearance and provide a therapeutic strategy to restore protein homeostasis by harnessing SNARE activity.


Subject(s)
Lysosomes/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , R-SNARE Proteins/metabolism , alpha-Synuclein/metabolism , Animals , Cells, Cultured , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Transport/physiology , Stress, Physiological/physiology
13.
J Am Chem Soc ; 140(18): 5914-5924, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29676907

ABSTRACT

ß-Glucocerebrosidase (GCase) mutations cause Gaucher's disease and are a high risk factor in Parkinson's disease. The implementation of a small molecule modulator is a strategy to restore proper folding and lysosome delivery of degradation-prone mutant GCase. Here, we present a potent quinazoline modulator, JZ-4109, which stabilizes wild-type and N370S mutant GCase and increases GCase abundance in patient-derived fibroblast cells. We then developed a covalent modification strategy using a lysine targeted inactivator (JZ-5029) for in vitro mechanistic studies. By using native top-down mass spectrometry, we located two potentially covalently modified lysines. We obtained the first crystal structure, at 2.2 Å resolution, of a GCase with a noniminosugar modulator covalently bound, and were able to identify the exact lysine residue modified (Lys346) and reveal an allosteric binding site. GCase dimerization was induced by our modulator binding, which was observed by native mass spectrometry, its crystal structure, and size exclusion chromatography with a multiangle light scattering detector. Finally, the dimer form was confirmed by negative staining transmission electron microscopy studies. Our newly discovered allosteric site and observed GCase dimerization provide a new mechanistic insight into GCase and its noniminosugar modulators and facilitate the rational design of novel GCase modulators for Gaucher's disease and Parkinson's disease.


Subject(s)
Allosteric Site , Glucosylceramidase/chemistry , Glucosylceramidase/metabolism , Protein Multimerization/drug effects , Allosteric Site/drug effects , Crystallography, X-Ray , Fibroblasts/metabolism , Glucosylceramidase/genetics , HEK293 Cells , Humans , Mass Spectrometry , Models, Molecular , Molecular Structure , Mutation
14.
Neurobiol Dis ; 106: 191-204, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28711409

ABSTRACT

The pathology of Parkinson's disease and other synucleinopathies is characterized by the formation of intracellular inclusions comprised primarily of misfolded, fibrillar α-synuclein (α-syn). One strategy to slow disease progression is to prevent the misfolding and aggregation of its native monomeric form. Here we present findings that support the contention that the tricyclic antidepressant compound nortriptyline (NOR) has disease-modifying potential for synucleinopathies. Findings from in vitro aggregation and kinetics assays support the view that NOR inhibits aggregation of α-syn by directly binding to the soluble, monomeric form, and by enhancing reconfiguration of the monomer, inhibits formation of toxic conformations of the protein. We go on to demonstrate that NOR inhibits the accumulation, aggregation and neurotoxicity of α-syn in multiple cell and animal models. These findings suggest that NOR, a compound with established safety and efficacy for treatment of depression, may slow progression of α-syn pathology by directly binding to soluble, native, α-syn, thereby inhibiting pathological aggregation and preserving its normal functions.


Subject(s)
Neurodegenerative Diseases/drug therapy , Neurons/drug effects , Neuroprotective Agents/pharmacology , Nortriptyline/pharmacology , Protein Aggregation, Pathological/drug therapy , alpha-Synuclein/metabolism , Animals , Animals, Genetically Modified , Antidepressive Agents, Tricyclic/pharmacology , Brain/drug effects , Brain/metabolism , Brain/pathology , Cell Line, Tumor , Drosophila , Escherichia coli , Humans , Male , Mice , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/metabolism , Neurons/pathology , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Protein Unfolding/drug effects , Random Allocation , Rats, Sprague-Dawley , Recombinant Proteins/metabolism , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/genetics
15.
J Neurochem ; 119(2): 389-97, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21848810

ABSTRACT

α-Synuclein causes Parkinson's disease if mutated or aberrantly produced in neurons. α-Synuclein-lipid interactions are important for the normal function of the protein, but can also contribute to pathogenesis. We previously reported that deletion of the first 10 N-terminal amino acids dramatically reduced lipid binding in vitro, as well as membrane binding and toxicity in yeast. Here we extend this study to human neuroblastoma SHSY-5Y cells, and find that in these cells the first 10 N-terminal residues do not affect α-synuclein membrane binding, self-association and cell viability, contrary to yeast. Differences in lipid composition, membrane fluidity and cytosolic factors between yeast and neuronal cells may account for the distinct binding behavior of the truncated variant in these two systems. Retinoic acid promotes differentiation and α-synuclein oligomer formation in neuroblastoma cells, while addition of a proteasomal inhibitor induces neurite outgrowth and toxicity to certain wild-type and truncated α-synuclein clones. Yeast recapitulate several features of α-synuclein (patho)biology, but its simplicity sets limitations; verification of yeast results in more relevant model systems is, therefore, essential.


Subject(s)
Neuroblastoma/metabolism , Saccharomyces cerevisiae/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Blotting, Western , Cell Cycle/physiology , Cell Differentiation , Cell Line, Tumor , Cell Membrane/metabolism , Cell Survival/physiology , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Humans , Microscopy, Fluorescence , Saccharomyces cerevisiae/drug effects , Transfection , Tretinoin/pharmacology , alpha-Synuclein/toxicity
16.
J Med Chem ; 53(7): 2709-18, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20232802

ABSTRACT

We recently described a set of drug-like molecules obtained from an in silico screen that stabilize mutant superoxide dismutase-1 (SOD-1) linked to familial amyotrophic lateral sclerosis (ALS) against unfolding and aggregation but exhibited poor binding specificity toward SOD-1 in presence of blood plasma. A reasonable but not a conclusive model for the binding of these molecules was proposed on the basis of restricted docking calculations and site-directed mutagenesis of key residues at the dimer interface. A set of hydrogen bonding constraints obtained from these experiments were used to guide docking calculations with compound library around the dimer interface. A series of chemically unrelated hits were predicted, which were experimentally tested for their ability to block aggregation. At least six of the new molecules exhibited high specificity of binding toward SOD-1 in the presence of blood plasma. These molecules represent a new class of molecules for further development into clinical candidates.


Subject(s)
Amyotrophic Lateral Sclerosis/enzymology , Computational Biology , Mutant Proteins/metabolism , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Superoxide Dismutase/metabolism , Absorption , Binding Sites , Buffers , DNA Mutational Analysis , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Ligands , Models, Molecular , Molecular Conformation , Mutagenesis, Site-Directed , Mutant Proteins/blood , Mutant Proteins/chemistry , Mutant Proteins/genetics , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Substrate Specificity , Superoxide Dismutase/blood , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics , Superoxide Dismutase-1 , Uracil/analogs & derivatives , Uracil/metabolism
17.
Proc Natl Acad Sci U S A ; 106(12): 4635-40, 2009 Mar 24.
Article in English | MEDLINE | ID: mdl-19261853

ABSTRACT

Ubiquitin C-terminal hydrolase-L1 (UCH-L1) is linked to Parkinson's disease (PD) and memory and is selectively expressed in neurons at high levels. Its expression pattern suggests a function distinct from that of its widely expressed homolog UCH-L3. We report here that, in contrast to UCH-L3, UCH-L1 exists in a membrane-associated form (UCH-L1(M)) in addition to the commonly studied soluble form. C-terminal farnesylation promotes the association of UCH-L1 with cellular membranes, including the endoplasmic reticulum. The amount of UCH-L1(M) in transfected cells is shown to correlate with the intracellular level of alpha-synuclein, a protein whose accumulation is associated with neurotoxicity and the development of PD. Reduction of UCH-L1(M) in cell culture models of alpha-synuclein toxicity by treatment with a farnesyltransferase inhibitor (FTI-277) reduces alpha-synuclein levels and increases cell viability. Proteasome function is not affected by UCH-L1(M), suggesting that it may negatively regulate the lysosomal degradation of alpha-synuclein. Therefore, inhibition of UCH-L1 farnesylation may be a therapeutic strategy for slowing the progression of PD and related synucleinopathies.


Subject(s)
Cell Membrane/enzymology , Neurons/drug effects , Parkinson Disease/enzymology , Parkinson Disease/therapy , Prenylation/drug effects , Ubiquitin Thiolesterase/metabolism , alpha-Synuclein/toxicity , Animals , Brain/drug effects , Brain/enzymology , Brain/pathology , COS Cells , Cell Line, Tumor , Cell Membrane/drug effects , Chlorocebus aethiops , Cysteine/metabolism , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/enzymology , Humans , Intracellular Membranes/drug effects , Intracellular Membranes/enzymology , Methionine/analogs & derivatives , Methionine/pharmacology , Mice , Neurons/metabolism , Neurons/pathology , Proteasome Endopeptidase Complex/metabolism , Protein Binding/drug effects
18.
J Mol Biol ; 389(2): 413-24, 2009 Jun 05.
Article in English | MEDLINE | ID: mdl-19285989

ABSTRACT

Alpha-synuclein (alpha-syn), a protein implicated in Parkinson's disease, is structurally diverse. In addition to its random-coil state, alpha-syn can adopt an alpha-helical structure upon lipid membrane binding or a beta-sheet structure upon aggregation. We used yeast biology and in vitro biochemistry to detect how sequence changes alter the structural propensity of alpha-syn. The N-terminus of the protein, which adopts an alpha-helical conformation upon lipid binding, is essential for membrane binding in yeast, and variants that are more prone to forming an alpha-helical structure in vitro are generally more toxic to yeast. beta-Sheet structure and inclusion formation, on the other hand, appear to be protective, possibly by sequestering the protein from the membrane. Surprisingly, sequential deletion of residues 2 through 11 caused a dramatic drop in alpha-helical propensity, vesicle binding in vitro, and membrane binding and toxicity in yeast, part of which could be mimicked by mutating aspartic acid at position 2 to alanine. Variants with distinct structural preferences, identified here by a reductionist approach, provide valuable tools for elucidating the nature of toxic forms of alpha-syn in neurons.


Subject(s)
Cell Membrane/metabolism , Yeasts/chemistry , alpha-Synuclein/chemistry , Amino Acid Sequence , Amino Acid Substitution , Fungal Proteins , Membrane Proteins , Protein Binding , Protein Structure, Secondary , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
19.
J Biol Chem ; 283(24): 16895-905, 2008 Jun 13.
Article in English | MEDLINE | ID: mdl-18343814

ABSTRACT

alpha-Synuclein (alpha-syn) phosphorylation at serine 129 is characteristic of Parkinson disease (PD) and related alpha-synulceinopathies. However, whether phosphorylation promotes or inhibits alpha-syn aggregation and neurotoxicity in vivo remains unknown. This understanding is critical for elucidating the role of alpha-syn in the pathogenesis of PD and for development of therapeutic strategies for PD. To better understand the structural and molecular consequences of Ser-129 phosphorylation, we compared the biochemical, structural, and membrane binding properties of wild type alpha-syn to those of the phosphorylation mimics (S129E, S129D) as well as of in vitro phosphorylated alpha-syn using a battery of biophysical techniques. Our results demonstrate that phosphorylation at Ser-129 increases the conformational flexibility of alpha-syn and inhibits its fibrillogenesis in vitro but does not perturb its membrane-bound conformation. In addition, we show that the phosphorylation mimics (S129E/D) do not reproduce the effect of phosphorylation on the structural and aggregation properties of alpha-syn in vitro. Our findings have significant implications for current strategies to elucidate the role of phosphorylation in modulating protein structure and function in health and disease and provide novel insight into the underlying mechanisms that govern alpha-syn aggregation and toxicity in PD and related alpha-synulceinopathies.


Subject(s)
Serine/chemistry , alpha-Synuclein/metabolism , Chromatography, Gel , Circular Dichroism , Humans , Liposomes/metabolism , Magnetic Resonance Spectroscopy , Micelles , Models, Biological , Models, Molecular , Molecular Conformation , Phosphorylation , Protein Conformation , Recombinant Proteins/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
20.
J Clin Invest ; 118(2): 777-88, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18172548

ABSTRACT

Altered degradation of alpha-synuclein (alpha-syn) has been implicated in the pathogenesis of Parkinson disease (PD). We have shown that alpha-syn can be degraded via chaperone-mediated autophagy (CMA), a selective lysosomal mechanism for degradation of cytosolic proteins. Pathogenic mutants of alpha-syn block lysosomal translocation, impairing their own degradation along with that of other CMA substrates. While pathogenic alpha-syn mutations are rare, alpha-syn undergoes posttranslational modifications, which may underlie its accumulation in cytosolic aggregates in most forms of PD. Using mouse ventral medial neuron cultures, SH-SY5Y cells in culture, and isolated mouse lysosomes, we have found that most of these posttranslational modifications of alpha-syn impair degradation of this protein by CMA but do not affect degradation of other substrates. Dopamine-modified alpha-syn, however, is not only poorly degraded by CMA but also blocks degradation of other substrates by this pathway. As blockage of CMA increases cellular vulnerability to stressors, we propose that dopamine-induced autophagic inhibition could explain the selective degeneration of PD dopaminergic neurons.


Subject(s)
Autophagy/genetics , Dopamine/metabolism , Molecular Chaperones/metabolism , Parkinson Disease/etiology , alpha-Synuclein/metabolism , Animals , Lysosomes/metabolism , Male , Mice , Mice, Mutant Strains , Parkinson Disease/pathology , Phosphorylation , Protein Processing, Post-Translational , Rats , Rats, Wistar , alpha-Synuclein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...