Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Ther Methods Clin Dev ; 18: 803-810, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32953931

ABSTRACT

Lentiviral vectors (LVs) are a popular gene delivery tool in cell and gene therapy and they are a primary tool for ex vivo transduction of T cells for expression of chimeric antigen receptor (CAR) in CAR-T cell therapies. Extensive process and product characterization are required in manufacturing virus-based gene vectors to better control batch-to-batch variability. However, it has been an ongoing challenge to make quantitative assessments of LV product because current analytical tools often are low throughput and lack robustness and standardization is still required. This paper presents a high-throughput and robust physico-chemical characterization method that directly assesses total LV particles. With simple sample preparation and fast elution time (6.24 min) of the LV peak in 440 mM NaCl (in 20 mM Tris-HCl [pH 7.5]), this ion exchange high-performance liquid chromatography (IEX-HPLC) method is ideal for routine in-process monitoring to facilitate the development of scalable and robust LV manufacturing processes. Furthermore, this HPLC method is suitable for the analysis of all in-process samples, from crude samples such as LV supernatants to final purified products. The linearity range of the standard curve is 3.13 × 108 to 1.0 × 1010 total particles/mL, and both the intra- and inter-assay variabilities are less than 5%.

2.
Vaccine ; 37(44): 6624-6632, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31548015

ABSTRACT

Ebola virus disease is an urgent international priority. Promising results for several vaccine candidates have been reported in non-human primate studies and clinical trials with the most promising being the rVSV-ZEBOV vaccine. In this study, we sought to produce rVSV-ZEBOV in HEK 293SF cells in suspension and serum-free media. The purpose of this study was to establish a process using the HEK 293SF production platform, optimise the production titre, demonstrate scalability and the efficiency of the generated material to elicit an immune reaction in an animal model. Critical process parameters were evaluated to maximize production yield and process robustness and the following operating conditions: 1-2 × 106 cells/mL grown in HyClone HyCell TransFx-H media infected at an MOI of 0.001 with a temperature shift to 34 °C during the production phase and a harvest of the product after 48 h. Using these conditions, scalability in a 3.5 L controlled bioreactor was shown reaching a titre of 1.19 × 108 TCID50/mL at the peak of production, the equivalent of 4165 doses of vaccine per litre. The produced virus was shown to be thermostable in the culture media and, when concentrated, purified and administered to mice, demonstrated the ability to induce a ZEBOV-specific immune response.


Subject(s)
Batch Cell Culture Techniques , Ebola Vaccines/biosynthesis , Ebola Vaccines/immunology , Ebolavirus/immunology , Vaccines, DNA/biosynthesis , Vaccines, DNA/immunology , Vesiculovirus , Animals , Antibodies, Viral/immunology , Bioreactors , Disease Models, Animal , Ebola Vaccines/administration & dosage , Ebola Vaccines/genetics , Ebolavirus/genetics , Female , HEK293 Cells , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Immunization , Mice , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Vesiculovirus/genetics
3.
Hum Gene Ther Methods ; 28(6): 330-339, 2017 12.
Article in English | MEDLINE | ID: mdl-28826344

ABSTRACT

Lentiviral vectors (LV) represent a key tool for gene and cell therapy applications. The production of these vectors in sufficient quantities for clinical applications remains a hurdle, prompting the field toward developing suspension processes that are conducive to large-scale production. This study describes a LV production strategy using a stable inducible producer cell line. The HEK293 cell line employed grows in suspension, thus offering direct scalability, and produces a green fluorescent protein (GFP)-expressing lentiviral vector in the 106 transduction units (TU)/mL range without optimization. The stable producer cell line, called clone 92, was derived by stable transfection from a packaging cell line with a plasmid encoding the transgene GFP. The packaging cell line expresses all the other necessary components to produce LV upon induction with cumate and doxycycline. First, the study demonstrated that LV production using clone 92 is scalable from 20 mL shake flasks to 3 L bioreactors. Next, two strategies were developed for high-yield LV production in perfusion mode using acoustic cell filter technology in 1-3 L bioreactors. The first approach uses a basal commercial medium and perfusion mode both pre- and post-induction for increasing cell density and LV recovery. The second approach makes use of a fortified medium formulation to achieve target cell density for induction in batch mode, followed by perfusion mode after induction. Using these perfusion-based strategies, the titer was improved to 3.2 × 107 TU/mL. As a result, cumulative functional LV titers were increased by up to 15-fold compared to batch mode, reaching a cumulative total yield of 8 × 1010 TU/L of bioreactor culture. This approach is easily amenable to large-scale production and commercial manufacturing.


Subject(s)
Biotechnology/methods , Cell Culture Techniques/methods , Genetic Vectors/genetics , Lentivirus/physiology , Transduction, Genetic/methods , Virus Cultivation/methods , Benzoates/pharmacology , Bioreactors , Doxycycline/pharmacology , HEK293 Cells , Humans , Lentivirus/drug effects , Lentivirus/genetics
4.
Vaccine ; 35(33): 4220-4228, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28648546

ABSTRACT

Influenza virus dominant antigens presentation using virus like particle (VLP) approach is attractive for the development of new generation of influenza vaccines. Mammalian cell platform offers many advantages for VLP production. However, limited attention has been paid to the processing of mammalian cell produced VLPs. Better understanding of the production system could contribute to increasing the yields and making large-scale VLP vaccine manufacturing feasible. In a previous study, we have generated a human embryonic kidney HEK-293 inducible cell line expressing Hemagglutinin (HA) and Neuraminidase (NA), which was used to produce VLPs upon transient transfection with a plasmid containing HIV-1 Gag. In this work, to streamline the production process, we have developed a new HEK-293 inducible cell line adapted to suspension growth expressing the three proteins HA, NA (H1N1 A/PR/8/1934) and the Gag fused to GFP for monitoring the VLP production. The process was optimized to reach higher volumetric yield of VLPs by increasing the cell density at the time of induction without sacrificing the cell specific productivity. A 5-fold improvement was achieved by doing media evaluation at small scale. Furthermore, a 3-L perfusion bioreactor mirrored the performance of small-scale shake flask cultures with sequential medium replacement. The cell density was increased to 14×106 cells/ml at the time of induction which augmented by 60-fold the volumetric yield to 1.54×1010 Gag-GFP fluorescent events/ml, as measured by flow cytometry. The 9.5-L harvest from the perfusion bioreactor was concentrated by tangential flow filtration at low shear rate. The electron micrographs revealed the presence of VLPs of 100-150nm with the characteristic dense core of HIV-1 particles. The developed process shows the feasibility of producing high quantity of influenza VLPs from an inducible mammalian stable cell line aiming at large scale vaccine manufacturing.


Subject(s)
HEK293 Cells , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza Vaccines/isolation & purification , Technology, Pharmaceutical/methods , Vaccines, Virus-Like Particle/isolation & purification , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/ultrastructure , Influenza Vaccines/immunology , Neuraminidase/genetics , Plasmids , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/ultrastructure , Viral Proteins/genetics , gag Gene Products, Human Immunodeficiency Virus/genetics
5.
Vaccine ; 34(29): 3381-7, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27154390

ABSTRACT

Tuberculosis (TB) is the second leading cause of death by infectious disease worldwide. The only available TB vaccine is the Bacille Calmette-Guerin (BCG). However, parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. AdAg85A, an adenoviral vector expressing the mycobacterial protein Ag85A, is a new tuberculosis vaccine candidate, and has shown promising results in pre-clinical studies and phase I trial. This adenovirus vectored vaccine is produced using HEK 293 cell culture. Here we report on the optimization of cell culture conditions, scale-up of production and purification of the AdAg85A at different scales. Four commercial serum-free media were evaluated under various conditions for supporting the growth of HEK293 cell and production of AdAg85A. A culturing strategy was employed to take advantages of two culture media with respective strengths in supporting the cell growth and virus production, which enabled to maintain virus productivity at higher cell densities and resulted in more than two folds of increases in culture titer. The production of AdAg85A was successfully scaled up and validated at 60L bioreactor under the optimal conditions. The AdAg85A generated from the 3L and 60L bioreactor runs was purified through several purification steps. More than 98% of total cellular proteins was removed, over 60% of viral particles was recovered after the purification process, and purity of AdAg85A was similar to that of the ATCC VR-1516 Ad5 standard. Vaccination of mice with the purified AdAg85A demonstrated a very good level of Ag85A-specific antibody responses. The optimized production and purification conditions were transferred to a GMP facility for manufacturing of AdAg85A for generation of clinical grade material to support clinical trials.


Subject(s)
Adenoviridae , Cell Culture Techniques , Tuberculosis Vaccines/biosynthesis , Acyltransferases/immunology , Animals , Antibodies, Bacterial/blood , Antibody Formation , Antigens, Bacterial/immunology , Bioreactors , Culture Media, Serum-Free , Female , HEK293 Cells , Humans , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Tuberculosis Vaccines/immunology , Tuberculosis, Pulmonary/prevention & control
6.
Vaccine ; 30(2): 300-6, 2012 Jan 05.
Article in English | MEDLINE | ID: mdl-22079076

ABSTRACT

Rabies virus is an important causative agent of disease resulting in an acute infection of the nervous system and death. Although curable if treated in a timely manner, rabies remains a serious public health issue in developing countries, and the indigenous threat of rabies continues in developed countries because of wildlife reservoirs. Control of rabies in wildlife is still an important challenge for governmental authorities. There are a number of rabies vaccines commercially available for control of wildlife rabies infection. However, the vaccines currently distributed to wildlife do not effectively immunize all at-risk species, particularly skunks. A replication competent recombinant adenovirus expressing rabies glycoprotein (AdRG1.3) has shown the most promising results in laboratory trials. The adenovirus vectored vaccine is manufactured using HEK 293 cells. This study describes the successful scale-up of AdRG1.3 adenovirus production from 1 to 500 L and the manufacturing of large quantities of bulk material required for field trials to demonstrate efficacy of this new candidate vaccine. The production process was streamlined by eliminating a medium replacement step prior to infection and the culture titer was increased by over 2 fold through optimization of cell culture medium. These improvements produced a more robust and cost-effective process that facilitates industrialization and commercialization. Over 17,000 L of AdRG1.3 adenovirus cultures were manufactured to support extensive field trials. AdRG1.3 adenovirus is formulated and packaged into baits by Artemis Technologies Inc. using proprietary technology. Field trials of AdRG1.3 rabies vaccine baits have been conducted in several Canadian provinces including Ontario, Quebec and New Brunswick. The results from field trials over the period 2006-2009 demonstrated superiority of the new vaccine over other licensed vaccines in immunizing wild animals that were previously difficult to vaccinate.


Subject(s)
Adenoviridae/isolation & purification , Drug Carriers/isolation & purification , Genetic Vectors/isolation & purification , Rabies Vaccines/isolation & purification , Rabies virus/genetics , Technology, Pharmaceutical/methods , Adenoviridae/genetics , Adenoviridae/growth & development , Animals , Cell Culture Techniques/methods , Cell Line , Humans , Rabies Vaccines/genetics , Vaccines, Synthetic/genetics , Vaccines, Synthetic/isolation & purification
7.
BMC Biotechnol ; 11: 84, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21884612

ABSTRACT

BACKGROUND: Cell culture-based production of influenza vaccine remains an attractive alternative to egg-based production. Short response time and high production yields are the key success factors for the broader adoption of cell culture technology for industrial manufacturing of pandemic and seasonal influenza vaccines. Recently, HEK293SF cells have been successfully used to produce influenza viruses, achieving hemagglutinin (HA) and infectious viral particle (IVP) titers in the highest ranges reported to date. In the same study, it was suggested that beyond 4 × 10(6) cells/mL, viral production was limited by a lack of nutrients or an accumulation of toxic products. RESULTS: To further improve viral titers at high cell densities, perfusion culture mode was evaluated. Productivities of both perfusion and batch culture modes were compared at an infection cell density of 6 × 10(6) cells/mL. The metabolism, including glycolysis, glutaminolysis and amino acids utilization as well as physiological indicators such as viability and apoptosis were extensively documented for the two modes of culture before and after viral infection to identify potential metabolic limitations. A 3 L bioreactor with a perfusion rate of 0.5 vol/day allowed us to reach maximal titers of 3.3 × 10(11) IVP/mL and 4.0 logHA units/mL, corresponding to a total production of 1.0 × 10(15) IVP and 7.8 logHA units after 3 days post-infection. Overall, perfusion mode titers were higher by almost one order of magnitude over the batch culture mode of production. This improvement was associated with an activation of the cell metabolism as seen by a 1.5-fold and 4-fold higher consumption rates of glucose and glutamine respectively. A shift in the viral production kinetics was also observed leading to an accumulation of more viable cells with a higher specific production and causing an increase in the total volumetric production of infectious influenza particles. CONCLUSIONS: These results confirm that the HEK293SF cell is an excellent substrate for high yield production of influenza virus. Furthermore, there is great potential in further improving the production yields through better control of the cell culture environment and viral production kinetics. Once accomplished, this cell line can be promoted as an industrial platform for cost-effective manufacturing of the influenza seasonal vaccine as well as for periods of peak demand during pandemics.


Subject(s)
Cell Culture Techniques/methods , HEK293 Cells/virology , Influenza A Virus, H1N1 Subtype/metabolism , Virion/metabolism , Virus Cultivation/methods , Amino Acids/metabolism , Animals , Apoptosis , Bioreactors/virology , Cell Line , Cell Proliferation , Cell Survival , Dogs , Glycolysis , HEK293 Cells/metabolism , Humans , Influenza A Virus, H1N1 Subtype/chemistry , Kinetics , Perfusion/methods , Temperature , Virion/chemistry
8.
J Gene Med ; 11(10): 868-76, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19618482

ABSTRACT

BACKGROUND: Lentiviral vectors (LV) offer several advantages over other gene delivery vectors. Their potential for the integration and long-term expression of therapeutic genes renders them an interesting tool for gene and cell therapy interventions. However, large-scale LV production remains an important challenge for the translation of LV-based therapeutic strategies to the clinic. The development of robust processes for mass production of LV is needed. METHODS: A suspension-grown HEK293 cell line was exploited for the production of green fluorescent protein-expressing LV by transient polyethylenimine (PEI)-based transfection with LV-encoding plasmid constructs. Using third-generation packaging plasmids (Gag/Pol, Rev), a vesicular stomatitis virus G envelope and a self-inactivating transfer vector, we employed strategies to increase volumetric and specific productivity. Functional LV titers were determined using a flow cytometry-based gene transfer assay. RESULTS: A combination of the most promising conditions (increase in cell density, medium selection, reduction of PEI-DNA complexes per cell, addition of sodium butyrate) resulted in significantly increased LV titers of more than 150-fold compared to non-optimized small-scale conditions, reaching infectious titers of approximately 10(8) transducing units/ml. These conditions are readily scalable and were validated in 3-liter scale perfusion cultures. CONCLUSIONS: Our process produces LV in suspension cultures and is consequently easily scalable, industrially viable and generated more than 10(11) total functional LV particles in a single bioreactor run. This process will allow the production of LV by transient transfection in sufficiently large quantities for phase I clinical trials at the 10-20-liter bioreactor scale.


Subject(s)
Genetic Vectors/biosynthesis , Lentivirus/genetics , Bioreactors , Butyrates/chemistry , Cell Count , Cell Culture Techniques/methods , Cell Line , Culture Media/chemistry , Genetic Vectors/genetics , Humans , Transfection
9.
Biotechnol Bioeng ; 97(2): 332-45, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17054119

ABSTRACT

The development of insect cells expressing recombinant proteins in a stable continuous manner is an attractive alternative to the BEV system for recombinant protein production. High cell density fed batch and continuous perfusion processes can be designed to maximize the productivity of stably transformed cells. A cell line (Sf-9SEAP) expressing high levels of the reporter protein SEAP stably was obtained by lipid-mediated transfection of Sf-9 insect cells and further selection and screening. The expression of the Sf-9SEAP cells was compared with the BEVS system. It was observed that, the yield obtained in BEVS was similar to the batch Sf-9SEAP at 8 and 7 IU/mL, respectively. The productivity of this foreign gene product with the stable cells was enhanced by bioprocess intensification employing the fed-batch and perfusion modes of culture to increase the cell density in culture. The fed batch process yielded a maximum cell density of 28 x 10(6) cells/mL and 12 IU/mL of SEAP. Further improvements in the productivity could be made using the perfusion process, which demonstrated a stable production rate for extended periods of time. The process was maintained for 43 days, with a steady-state cell density of 17-20 x 10(6) cells/mL and 7 IU/mL SEAP. The total yield obtained in the perfusion process (394 IU) was approximately 22 and 8 times higher than that obtained in a batch (17.6 IU) and fed batch (46.1 IU) process, respectively.


Subject(s)
Alkaline Phosphatase/biosynthesis , Biotechnology/methods , Cell Proliferation , Alkaline Phosphatase/metabolism , Animals , Baculoviridae/genetics , Bioreactors , Cell Culture Techniques/methods , Cells, Cultured , Perfusion , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spodoptera
10.
Biotechnol Adv ; 22(6): 433-44, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15135491

ABSTRACT

This article is a review highlighting the application of the acoustic filter as a reliable cell retention device during the long-term perfusion of animal cell cultures. Critical operating parameters such as duty cycle, perfusion and re-circulation flow rates, acoustic power and backflush frequency are discussed with regard to influence on the separation efficiency and optimal operating ranges have been identified. Perfusion data gathered from the literature have been complemented with original data from a series of perfusion experiments carried out in the context of industrial projects for industrially relevant cell lines including NS0, HEK-293, SP2-derived hybridoma and insect cells in different serum-supplemented and serum-free media at different perfusion rates and acoustic chamber volumes. Finally, scale-up potential of the acoustic filter for large-scale industrial applications is discussed.


Subject(s)
Acoustics/instrumentation , Biotechnology , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Filtration/instrumentation , Animals , Bioreactors , Cell Line , Culture Media, Serum-Free , Equipment Design , Filtration/methods , Humans , Hybridomas , Perfusion
SELECTION OF CITATIONS
SEARCH DETAIL
...