Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
ACS Chem Neurosci ; 12(20): 3885-3897, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34614352

ABSTRACT

Deformation, compression, or stretching of brain tissues cause diffuse axonal injury (DAI) and induce structural and functional alterations of astrocytes, the most abundant cell type in the brain. To gain further insight into the role of mechanically activated astrocytes on neuronal networks, this study was designed to investigate whether cytokines released by mechanically activated astrocytes can affect the growth and synaptic connections of cortical neuronal networks. Astrocytes were cultivated on elastic membranes and subjected to repetitive mechanical insults, whereas well-defined protein micropatterns were used to form standardized neuronal networks. GFAP staining showed that astrocytes were mechanically activated after two cycles of stretch and mesoscale discovery assays indicated that injured astrocytes released four major cytokines. To understand the role of these cytokines, neuronal networks were cultured with the supernatant of healthy or mechanically activated astrocytes, and the individual contribution of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) was studied. We found that the supernatant of two-cycle stretched astrocytes decreased presynaptic terminals and indicated that TNF-α must be considered a key player of the synaptic loss. Furthermore, our results indicate that cytokines released by injured astrocytes significantly modulate the balance between TNFR1 and TNFR2 receptors by enhancing R2 receptors. We demonstrated that TNF-α is not involved in this process, suggesting a predominant role of other secreted cytokines. Together, these results contribute to a better understanding of the consequences of repetitive astrocyte deformations and highlight the role of inflammatory signaling pathways in synaptic plasticity and modulation of TNFR1 and TNFR2 receptors.


Subject(s)
Astrocytes , Receptors, Tumor Necrosis Factor, Type II , Cells, Cultured , Cytokines , Humans , Tumor Necrosis Factor-alpha
2.
JMIR Med Inform ; 9(7): e27980, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34255700

ABSTRACT

BACKGROUND: Participation in quality controls, also called external quality assessment (EQA) schemes, is required for the ISO15189 accreditation of the Medical Centers of Human Genetics. However, directives on the minimal frequency of participation in genetic quality control schemes are lacking or too heterogeneous, with a possible impact on health care quality. OBJECTIVE: The aim of this project is to develop Belgian guidelines on the frequency of participation in quality controls for genetic testing in the context of rare diseases. METHODS: A group of experts analyzed 90 EQA schemes offered by accredited providers and focused on analyses used for the diagnosis of rare diseases. On that basis, the experts developed practical recommendations about the minimal frequencies of participation of the Medical Centers of Human Genetics in quality controls and how to deal with poor performances and change management. These guidelines were submitted to the Belgian Accreditation Body and then reviewed and approved by the Belgian College of Human Genetics and Rare Diseases and by the National Institute for Health and Disability Insurance. RESULTS: The guidelines offer a decisional algorithm for the minimal frequency of participation in human genetics EQA schemes. This algorithm has been developed taking into account the scopes of the EQA schemes, the levels of experience, and the annual volumes of the Centers of Human Genetics in the performance of the tests considered. They include three key principles: (1) the recommended annual assessment of all genetic techniques and technological platforms, if possible through EQAs covering the technique, genotyping, and clinical interpretation; (2) the triennial assessment of the genotyping and interpretation of specific germline mutations and pharmacogenomics analyses; and (3) the documentation of actions undertaken in the case of poor performances and the participation to quality control the following year. The use of a Bayesian statistical model has been proposed to help the Centers of Human Genetics to determine the theoretical number of tests that should be annually performed to achieve a certain threshold of performance (eg, a maximal error rate of 1%). Besides, the guidelines insist on the role and responsibility of the national public health authorities in the follow-up of the quality of analyses performed by the Medical Centers of Human Genetics and in demonstrating the cost-effectiveness and rationalization of participation frequency in these quality controls. CONCLUSIONS: These guidelines have been developed based on the analysis of a large panel of EQA schemes and data collected from the Belgian Medical Centers of Human Genetics. They are applicable to other countries and will facilitate and improve the quality management and financing systems of the Medical Centers of Human Genetics.

3.
Cell Adh Migr ; 11(1): 98-109, 2017 01 02.
Article in English | MEDLINE | ID: mdl-27111836

ABSTRACT

The mechanical properties of living cells reflect their propensity to migrate and respond to external forces. Both cellular and nuclear stiffnesses are strongly influenced by the rigidity of the extracellular matrix (ECM) through reorganization of the cyto- and nucleoskeletal protein connections. Changes in this architectural continuum affect cell mechanics and underlie many pathological conditions. In this context, an accurate and combined quantification of the mechanical properties of both cells and nuclei can contribute to a better understanding of cellular (dys-)function. To address this challenge, we have established a robust method for probing cellular and nuclear deformation during spreading and detachment from micropatterned substrates. We show that (de-)adhesion kinetics of endothelial cells are modulated by substrate stiffness and rely on the actomyosin network. We combined this approach with measurements of cell stiffness by magnetic tweezers to show that relaxation dynamics can be considered as a reliable parameter of cellular pre-stress in adherent cells. During the adhesion stage, large cellular and nuclear deformations occur over a long time span (>60 min). Conversely, nuclear deformation and condensed chromatin are relaxed in a few seconds after detachment. Finally, our results show that accumulation of farnesylated prelamin leads to modifications of the nuclear viscoelastic properties, as reflected by increased nuclear relaxation times. Our method offers an original and non-intrusive way of simultaneously gauging cellular and nuclear mechanics, which can be extended to high-throughput screens of pathological conditions and potential countermeasures.


Subject(s)
Cell Nucleus/metabolism , Cytoskeleton/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Microtechnology/methods , Stress, Mechanical , Actomyosin/metabolism , Biomechanical Phenomena , Cell Adhesion , Cell Movement , Cell Nucleus Shape , Cell Shape , Extracellular Matrix/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Kinetics , Lamin Type A/metabolism , Time Factors
4.
Biomaterials ; 89: 14-24, 2016 May.
Article in English | MEDLINE | ID: mdl-26946402

ABSTRACT

The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering.


Subject(s)
Biocompatible Materials/chemistry , Cerebellar Cortex/cytology , Laminin/chemistry , Nerve Net/cytology , Neurons/cytology , Polylysine/chemistry , Action Potentials , Animals , Cell Adhesion , Cell Culture Techniques , Cell Movement , Cells, Cultured , Elastic Modulus , Rats , Tissue Engineering
6.
Sci Rep ; 4: 7362, 2014 Dec 08.
Article in English | MEDLINE | ID: mdl-25482017

ABSTRACT

Increasing evidences show that the actin cytoskeleton is a key parameter of the nuclear remodeling process in response to the modifications of cellular morphology. However, detailed information on the interaction between the actin cytoskeleton and the nuclear lamina was still lacking. We addressed this question by constraining endothelial cells on rectangular fibronectin-coated micropatterns and then using Structured Illumination Microscopy (SIM) to observe the interactions between actin stress fibers, nuclear lamina and LINC complexes at a super-resolution scale. Our results show that tension in apical actin stress fibers leads to deep nuclear indentations that significantly deform the nuclear lamina. Interestingly, indented nuclear zones are characterized by a local enrichment of LINC complexes, which anchor apical actin fibers to the nuclear lamina. Moreover, our findings indicate that nuclear indentations induce the formation of segregated domains of condensed chromatin. However, nuclear indentations and condensed chromatin domains are not irreversible processes and both can relax in absence of tension in apical actin stress fibers.


Subject(s)
Cytoskeleton/metabolism , Microscopy/methods , Nuclear Lamina/metabolism , Cell Nucleus , Chromatin/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Protein Binding , Protein Transport , Stress Fibers/metabolism
7.
Methods Cell Biol ; 121: 33-48, 2014.
Article in English | MEDLINE | ID: mdl-24560501

ABSTRACT

This protocol describes a simple method to deposit protein micropatterns over a wide range of culture substrate stiffness (three orders of magnitude) by using two complementary polymeric substrates. In the first part, we introduce a novel polyacrylamide hydrogel, called hydroxy-polyacrylamide (PAAm), that permits to surmount the intrinsically nonadhesive properties of polyacrylamide with minimal requirements in cost or expertize. We present a protocol for tuning easily the rigidity of "soft" hydroxy-PAAm hydrogels between ~0.5 and 50 kPa and a micropatterning method to locally deposit protein micropatterns on these hydrogels. In a second part, we describe a protocol for tuning the rigidity of "stiff" silicone elastomers between ~100 and 1000 kPa and printing efficiently proteins from the extracellular matrix. Finally, we investigate the effect of the matrix rigidity on the nucleus of primary endothelial cells by tuning the rigidity of both polymeric substrates. We envision that the complementarity of these two polymeric substrates, combined with an efficient microprinting technique, can be further developed in the future as a powerful mechanobiology platform to investigate in vitro the effect of mechanotransduction cues on cellular functions, gene expression, and stem cell differentiation.


Subject(s)
Acrylic Resins/chemistry , Coated Materials, Biocompatible , Elastic Modulus/physiology , Hydrogels/chemistry , Silicone Elastomers/chemistry , 3T3 Cells , Animals , Cell Adhesion/physiology , Cell Culture Techniques , Cell Line , Cellular Microenvironment , Extracellular Matrix/physiology , Mechanotransduction, Cellular/physiology , Mice , Printing , Proteins/chemistry , Rats , Stress, Mechanical , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...