Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 195(2): 1694-1711, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38378170

ABSTRACT

The root system plays an essential role in plant growth and adaptation to the surrounding environment. The root clock periodically specifies lateral root prebranch sites (PBS), where a group of pericycle founder cells (FC) is primed to become lateral root founder cells and eventually give rise to lateral root primordia or lateral roots (LRs). This clock-driven organ formation process is tightly controlled by modulation of auxin content and signaling. Auxin perception entails the physical interaction of TRANSPORT INHIBITOR RESPONSE 1 (TIR1) or AUXIN SIGNALING F-BOX (AFBs) proteins with AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressors to form a co-receptor system. Despite the apparent simplicity, the understanding of how specific auxin co-receptors are assembled remains unclear. We identified the compound bis-methyl auxin conjugated with N-glucoside, or BiAux, in Arabidopsis (Arabidopsis thaliana) that specifically induces the formation of PBS and the emergence of LR, with a slight effect on root elongation. Docking analyses indicated that BiAux binds to F-box proteins, and we showed that BiAux function depends on TIR1 and AFB2 F-box proteins and AUXIN RESPONSE FACTOR 7 activity, which is involved in FC specification and LR formation. Finally, using a yeast (Saccharomyces cerevisiae) heterologous expression system, we showed that BiAux favors the assemblage of specific co-receptors subunits involved in LR formation and enhances AUXIN/INDOLE-3-ACETIC ACID 28 protein degradation. These results indicate that BiAux acts as an allosteric modulator of specific auxin co-receptors. Therefore, BiAux exerts a fine-tune regulation of auxin signaling aimed to the specific formation of LR among the many development processes regulated by auxin.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Indoleacetic Acids , Plant Roots , Indoleacetic Acids/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Signal Transduction , F-Box Proteins/metabolism , F-Box Proteins/genetics , Plant Growth Regulators/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics
2.
Front Microbiol ; 14: 1191255, 2023.
Article in English | MEDLINE | ID: mdl-37405164

ABSTRACT

Serendipita indica is an endophytic root symbiont fungus that enhances the growth of various plants under different stress conditions, including salinity. Here, the functional characterization of two fungal Na+/H+ antiporters, SiNHA1 and SiNHX1 has been carried out to study their putative role in saline tolerance. Although their gene expression does not respond specifically to saline conditions, they could contribute, together with the previously characterized Na+ efflux systems SiENA1 and SiENA5, to relieve Na+ from the S. indica cytosol under this stressed condition. In parallel, an in-silico study has been carried out to define its complete transportome. To further investigate the repertoire of transporters expressed in free-living cells of S. indica and during plant infection under saline conditions, a comprehensive RNA-seq approach was taken. Interestingly, SiENA5 was the only gene significantly induced under free-living conditions in response to moderate salinity at all the tested time points, revealing that it is one of the main salt-responsive genes of S. indica. In addition, the symbiosis with Arabidopsis thaliana also induced SiENA5 gene expression, but significant changes were only detected after long periods of infection, indicating that the association with the plant somehow buffers and protects the fungus against the external stress. Moreover, the significant and strongest induction of the homologous gene SiENA1 occurred during symbiosis, regardless the exposure to salinity. The obtained results suggest a novel and relevant role of these two proteins during the establishment and maintenance of fungus-plant interaction.

3.
Environ Microbiol ; 21(9): 3364-3378, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30945789

ABSTRACT

Serendipita indica (formerly Piriformospora indica) is an endophytic fungus that colonizes plant roots producing a beneficial effect on plant growth and development under optimal and suboptimal conditions provoked by any biotic or abiotic stress, such as salt stress. Salinity induces osmotic and ionic imbalances in plants, mainly by altering the Na+ and K+ contents. However, the mechanism by which Serendipita improves plant growth has yet to be elucidated. Previous works suggest that this fungus improves the plant osmotic state but not much is known about whether it participates in readjustment of the ionic imbalance in plants. Here, we report that co-cultivation with Serendipita reduces the Na+ content of Arabidopsis plants under saline conditions. Additionally, we describe the functional characterization of the two Serendipita ENA ATPases, which are homologous to the main proteins involved in the salt tolerance of other fungi. Their heterologous expression in salt-sensitive yeast mutants shows that SiENA1 is involved in Na+ and K+ efflux, while SiENA5 seems to only be involved in Na+ detoxification. Both are induced and might have a relevant function at alkaline pH, condition in which there are few chlamydospores in the mycelium, as well as during co-cultivation with plants exposed to saline conditions.

4.
Genes (Basel) ; 9(2)2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29364862

ABSTRACT

Rhizobium leguminosarum bv. viciae is a soil α-proteobacterium that establishes a diazotrophic symbiosis with different legumes of the Fabeae tribe. The number of genome sequences from rhizobial strains available in public databases is constantly increasing, although complete, fully annotated genome structures from rhizobial genomes are scarce. In this work, we report and analyse the complete genome of R. leguminosarum bv. viciae UPM791. Whole genome sequencing can provide new insights into the genetic features contributing to symbiotically relevant processes such as bacterial adaptation to the rhizosphere, mechanisms for efficient competition with other bacteria, and the ability to establish a complex signalling dialogue with legumes, to enter the root without triggering plant defenses, and, ultimately, to fix nitrogen within the host. Comparison of the complete genome sequences of two strains of R. leguminosarum bv. viciae, 3841 and UPM791, highlights the existence of different symbiotic plasmids and a common core chromosome. Specific genomic traits, such as plasmid content or a distinctive regulation, define differential physiological capabilities of these endosymbionts. Among them, strain UPM791 presents unique adaptations for recycling the hydrogen generated in the nitrogen fixation process.

5.
Plant Cell Physiol ; 58(12): 2166-2178, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29036645

ABSTRACT

K+ is widely used by plant cells, whereas Na+ can easily reach toxic levels during plant growth, which typically occurs in saline environments; however, the effects and functions in the chloroplast have been only roughly estimated. Traditionally, the occurrence of ionic fluxes across the chloroplast envelope or the thylakoid membranes has been mostly deduced from physiological measurements or from knowledge of chloroplast metabolism. However, many of the proteins involved in these fluxes have not yet been characterized. Based on genomic and RNA sequencing (RNA-seq) analyses, we present a comprehensive compilation of genes encoding putative ion transporters and channels expressed in the chloroplasts of the moss Physcomitrella patens, with a special emphasis on those related to Na+ and K+ fluxes. Based on the functional characterization of nhad mutants, we also discuss the putative role of NHAD transporters in Na+ homeostasis and osmoregulation of this organelle and the putative contribution of chloroplasts to salt tolerance in this moss. We demonstrate that NaCl does not affect the chloroplast functionality in Physcomitrella despite significantly modifying expression of ionic transporters and cellular morphology, specifically the chloroplast ultrastructure, revealing a high starch accumulation. Additionally, NHAD transporters apparently do not play any essential roles in salt tolerance.


Subject(s)
Bryopsida/genetics , Bryopsida/metabolism , Chloroplasts/metabolism , Plant Proteins/metabolism , Sodium-Hydrogen Exchangers/metabolism , Bryopsida/cytology , Chloroplasts/genetics , Gene Expression Profiling , Genome, Plant , Green Fluorescent Proteins/genetics , Homeostasis , Hydrogen-Ion Concentration , Ion Transport , Mutation , Plant Proteins/genetics , Plants, Genetically Modified , Potassium/metabolism , Salinity , Sodium/metabolism , Sodium-Hydrogen Exchangers/genetics
6.
Dev Cell ; 22(6): 1275-85, 2012 Jun 12.
Article in English | MEDLINE | ID: mdl-22698285

ABSTRACT

In plants, developmental programs and tropisms are modulated by the phytohormone auxin. Auxin reconfigures the actin cytoskeleton, which controls polar localization of auxin transporters such as PIN2 and thus determines cell-type-specific responses. In conjunction with a second growth-promoting phytohormone, brassinosteroid (BR), auxin synergistically enhances growth and gene transcription. We show that BR alters actin configuration and PIN2 localization in a manner similar to that of auxin. We describe a BR constitutive-response mutant that bears an allele of the ACTIN2 gene and shows altered actin configuration, PIN2 delocalization, and a broad array of phenotypes that recapitulate BR-treated plants. Moreover, we show that actin filament reconfiguration is sufficient to activate BR signaling, which leads to an enhanced auxin response. Our results demonstrate that the actin cytoskeleton functions as an integration node for the BR signaling pathway and auxin responsiveness.


Subject(s)
Actin Cytoskeleton/metabolism , Brassinosteroids/metabolism , Indoleacetic Acids/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Mutation , Signal Transduction
7.
Plant Cell ; 19(3): 1123-33, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17400898

ABSTRACT

The exceptional toxicity of arsenate [As(V)] is derived from its close chemical similarity to phosphate (Pi), which allows the metalloid to be easily incorporated into plant cells through the high-affinity Pi transport system. In this study, we identified an As(V)-tolerant mutant of Arabidopsis thaliana named pht1;1-3, which harbors a semidominant allele coding for the high-affinity Pi transporter PHT1;1. pht1;1-3 displays a slow rate of As(V) uptake that ultimately enables the mutant to accumulate double the arsenic found in wild-type plants. Overexpression of the mutant protein in wild-type plants provokes phenotypic effects similar to pht1;1-3 with regard to As(V) uptake and accumulation. In addition, gene expression analysis of wild-type and mutant plants revealed that, in Arabidopsis, As(V) represses the activation of genes specifically involved in Pi uptake, while inducing others transcriptionally regulated by As(V), suggesting that converse signaling pathways are involved in plant responses to As(V) and low Pi availability. Furthermore, the repression effect of As(V) on Pi starvation responses may reflect a regulatory mechanism to protect plants from the extreme toxicity of arsenic.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arsenic/metabolism , Mutation, Missense/genetics , Phosphate Transport Proteins/metabolism , Adaptation, Physiological , Arabidopsis/genetics , Fungal Proteins/metabolism , Gene Expression , Gene Expression Regulation, Plant , Genes, Plant , Molecular Mimicry , Phenotype , Phosphate Transport Proteins/genetics , Phosphates/deficiency , Yeasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...