Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35209100

ABSTRACT

Voltage-gated calcium channels (VGCCs) are widely expressed in the brain, heart and vessels, smooth and skeletal muscle, as well as in endocrine cells. VGCCs mediate gene transcription, synaptic and neuronal structural plasticity, muscle contraction, the release of hormones and neurotransmitters, and membrane excitability. Therefore, it is not surprising that VGCC dysfunction results in severe pathologies, such as cardiovascular conditions, neurological and psychiatric disorders, altered glycemic levels, and abnormal smooth muscle tone. The latest research findings and clinical evidence increasingly show the critical role played by VGCCs in autism spectrum disorders, Parkinson's disease, drug addiction, pain, and epilepsy. These findings outline the importance of developing selective calcium channel inhibitors and modulators to treat such prevailing conditions of the central nervous system. Several small molecules inhibiting calcium channels are currently used in clinical practice to successfully treat pain and cardiovascular conditions. However, the limited palette of molecules available and the emerging extent of VGCC pathophysiology require the development of additional drugs targeting these channels. Here, we provide an overview of the role of calcium channels in neurological disorders and discuss possible strategies to generate novel therapeutics.


Subject(s)
Calcium Channel Agonists/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Animals , Calcium Channel Agonists/therapeutic use , Calcium Channel Blockers/therapeutic use , Calcium Channels/chemistry , Calcium Channels/classification , Calcium Channels/genetics , Clinical Studies as Topic , Disease Management , Disease Susceptibility , Drug Discovery , Drug Evaluation, Preclinical , Humans , Ligands , Nervous System Diseases/diagnosis , Nervous System Diseases/drug therapy , Nervous System Diseases/etiology , Nervous System Diseases/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...