Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Cancer ; 4(10): 1474-1490, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37783807

ABSTRACT

Acute myeloid leukemia (AML), the most frequent leukemia in adults, is driven by recurrent somatically acquired genetic lesions in a restricted number of genes. Treatment with tyrosine kinase inhibitors has demonstrated that targeting of prevalent FMS-related receptor tyrosine kinase 3 (FLT3) gain-of-function mutations can provide significant survival benefits for patients, although the efficacy of FLT3 inhibitors in eliminating FLT3-mutated clones is variable. We identified a T cell receptor (TCR) reactive to the recurrent D835Y driver mutation in the FLT3 tyrosine kinase domain (TCRFLT3D/Y). TCRFLT3D/Y-redirected T cells selectively eliminated primary human AML cells harboring the FLT3D835Y mutation in vitro and in vivo. TCRFLT3D/Y cells rejected both CD34+ and CD34- AML in mice engrafted with primary leukemia from patients, reaching minimal residual disease-negative levels, and eliminated primary CD34+ AML leukemia-propagating cells in vivo. Thus, T cells targeting a single shared mutation can provide efficient immunotherapy toward selective elimination of clonally involved primary AML cells in vivo.


Subject(s)
Leukemia, Myeloid, Acute , Protein-Tyrosine Kinases , Adult , Humans , Animals , Mice , Mutation , Protein-Tyrosine Kinases/genetics , Gain of Function Mutation , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Receptors, Antigen, T-Cell/genetics , fms-Like Tyrosine Kinase 3/genetics
2.
Cell Rep ; 42(1): 111995, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36656713

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOC) is driven by mutations that mediate escape from neutralizing antibodies. There is also evidence that mutations can cause loss of T cell epitopes. However, studies on viral escape from T cell immunity have been hampered by uncertain estimates of epitope prevalence. Here, we map and quantify CD8 T cell responses to SARS-CoV-2-specific minimal epitopes in blood drawn from April to June 2020 from 83 COVID-19 convalescents. Among 37 HLA ligands eluted from five prevalent alleles and an additional 86 predicted binders, we identify 29 epitopes with an immunoprevalence ranging from 3% to 100% among individuals expressing the relevant HLA allele. Mutations in VOC are reported in 10.3% of the epitopes, while 20.6% of the non-immunogenic peptides are mutated in VOC. The nine most prevalent epitopes are conserved in VOC. Thus, comprehensive mapping of epitope prevalence does not provide evidence that mutations in VOC are driven by escape of T cell immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , CD8-Positive T-Lymphocytes , COVID-19/immunology , Epitopes, T-Lymphocyte/genetics , Immunodominant Epitopes/genetics , SARS-CoV-2/genetics
4.
Nature ; 603(7902): 721-727, 2022 03.
Article in English | MEDLINE | ID: mdl-35264796

ABSTRACT

Activated T cells secrete interferon-γ, which triggers intracellular tryptophan shortage by upregulating the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme1-4. Here we show that despite tryptophan depletion, in-frame protein synthesis continues across tryptophan codons. We identified tryptophan-to-phenylalanine codon reassignment (W>F) as the major event facilitating this process, and pinpointed tryptophanyl-tRNA synthetase (WARS1) as its source. We call these W>F peptides 'substitutants' to distinguish them from genetically encoded mutants. Using large-scale proteomics analyses, we demonstrate W>F substitutants to be highly abundant in multiple cancer types. W>F substitutants were enriched in tumours relative to matching adjacent normal tissues, and were associated with increased IDO1 expression, oncogenic signalling and the tumour-immune microenvironment. Functionally, W>F substitutants can impair protein activity, but also expand the landscape of antigens presented at the cell surface to activate T cell responses. Thus, substitutants are generated by an alternative decoding mechanism with potential effects on gene function and tumour immunoreactivity.


Subject(s)
Tryptophan-tRNA Ligase , Tryptophan , Codon/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma , Neoplasms/immunology , Phenylalanine , T-Lymphocytes , Tryptophan/metabolism , Tryptophan Oxygenase/genetics , Tryptophan Oxygenase/metabolism , Tryptophan-tRNA Ligase/genetics , Tryptophan-tRNA Ligase/metabolism
5.
Nature ; 590(7845): 332-337, 2021 02.
Article in English | MEDLINE | ID: mdl-33328638

ABSTRACT

Extensive tumour inflammation, which is reflected by high levels of infiltrating T cells and interferon-γ (IFNγ) signalling, improves the response of patients with melanoma to checkpoint immunotherapy1,2. Many tumours, however, escape by activating cellular pathways that lead to immunosuppression. One such mechanism is the production of tryptophan metabolites along the kynurenine pathway by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1), which is induced by IFNγ3-5. However, clinical trials using inhibition of IDO1 in combination with blockade of the PD1 pathway in patients with melanoma did not improve the efficacy of treatment compared to PD1 pathway blockade alone6,7, pointing to an incomplete understanding of the role of IDO1 and the consequent degradation of tryptophan in mRNA translation and cancer progression. Here we used ribosome profiling in melanoma cells to investigate the effects of prolonged IFNγ treatment on mRNA translation. Notably, we observed accumulations of ribosomes downstream of tryptophan codons, along with their expected stalling at the tryptophan codon. This suggested that ribosomes bypass tryptophan codons in the absence of tryptophan. A detailed examination of these tryptophan-associated accumulations of ribosomes-which we term 'W-bumps'-showed that they were characterized by ribosomal frameshifting events. Consistently, reporter assays combined with proteomic and immunopeptidomic analyses demonstrated the induction of ribosomal frameshifting, and the generation and presentation of aberrant trans-frame peptides at the cell surface after treatment with IFNγ. Priming of naive T cells from healthy donors with aberrant peptides induced peptide-specific T cells. Together, our results suggest that IDO1-mediated depletion of tryptophan, which is induced by IFNγ, has a role in the immune recognition of melanoma cells by contributing to diversification of the peptidome landscape.


Subject(s)
Antigen Presentation , Frameshift Mutation , Melanoma/immunology , Peptides/genetics , Peptides/immunology , Protein Biosynthesis/immunology , T-Lymphocytes/immunology , Cell Line , Codon/genetics , Frameshifting, Ribosomal/drug effects , Frameshifting, Ribosomal/genetics , Frameshifting, Ribosomal/immunology , Histocompatibility Antigens Class I/immunology , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma/immunology , Interferon-gamma/pharmacology , Melanoma/pathology , Peptides/chemistry , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , Proteome , Ribosomes/drug effects , Ribosomes/metabolism , Tryptophan/deficiency , Tryptophan/genetics , Tryptophan/metabolism
6.
eNeuro ; 4(5)2017.
Article in English | MEDLINE | ID: mdl-28929130

ABSTRACT

Wound healing in the inner ear sensory epithelia is performed by the apical domains of supporting cells (SCs). Junctional F-actin belts of SCs are thin during development but become exceptionally thick during maturation. The functional significance of the thick belts is not fully understood. We have studied the role of F-actin belts during wound healing in the developing and adult cochlea of mice in vivo. We show that the thick belts serve as intracellular scaffolds that preserve the positions of surviving cells in the cochlear sensory epithelium. Junctions associated with the thick F-actin belts did not readily disassemble during wound healing. To compensate for this, basolateral membranes of SCs participated in the closure of surface breach. Because not only neighboring but also distant SCs contributed to wound healing by basolateral protrusions, this event appears to be triggered by contact-independent diffusible signals. In the search for regulators of wound healing, we inactivated RhoA in SCs, which, however, did not limit wound healing. RhoA inactivation in developing outer hair cells (OHCs) caused myosin II delocalization from the perijunctional domain and apical cell-surface enlargement. These abnormalities led to the extrusion of OHCs from the epithelium. These results demonstrate the importance of stability of the apical domain, both in wound repair by SCs and in development of OHCs, and that only this latter function is regulated by RhoA. Because the correct cytoarchitecture of the cochlear sensory epithelium is required for normal hearing, the stability of cell apices should be maintained in regenerative and protective interventions.


Subject(s)
Cochlea , Cytoskeleton/metabolism , Gene Expression Regulation, Developmental/genetics , Hair Cells, Vestibular/metabolism , Wound Healing/genetics , rhoA GTP-Binding Protein/metabolism , Actins/metabolism , Age Factors , Animals , Animals, Newborn , Cochlea/cytology , Cochlea/embryology , Cochlea/growth & development , Embryo, Mammalian , Epithelium/embryology , Epithelium/growth & development , Epithelium/metabolism , Epithelium/ultrastructure , Female , Hair Cells, Vestibular/ultrastructure , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Electron, Scanning , Myosin Type II/metabolism , Pregnancy , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , rhoA GTP-Binding Protein/genetics
7.
eNeuro ; 3(2)2016.
Article in English | MEDLINE | ID: mdl-27257624

ABSTRACT

Prevention of auditory hair cell death offers therapeutic potential to rescue hearing. Pharmacological blockade of JNK/c-Jun signaling attenuates injury-induced hair cell loss, but with unsolved mechanisms. We have characterized the c-Jun stress response in the mouse cochlea challenged with acoustic overstimulation and ototoxins, by studying the dynamics of c-Jun N-terminal phosphorylation. It occurred acutely in glial-like supporting cells, inner hair cells, and the cells of the cochlear ion trafficking route, and was rapidly downregulated after exposures. Notably, death-prone outer hair cells lacked c-Jun phosphorylation. As phosphorylation was triggered also by nontraumatic noise levels and none of the cells showing this activation were lost, c-Jun phosphorylation is a biomarker for cochlear stress rather than an indicator of a death-prone fate of hair cells. Preconditioning with a mild noise exposure before a stronger traumatizing noise exposure attenuated the cochlear c-Jun stress response, suggesting that the known protective effect of sound preconditioning on hearing is linked to suppression of c-Jun activation. Finally, mice with mutations in the c-Jun N-terminal phosphoacceptor sites showed partial, but significant, hair cell protection. These data identify the c-Jun stress response as a paracrine mechanism that mediates outer hair cell death.


Subject(s)
Biomarkers/metabolism , Hair Cells, Vestibular/metabolism , Hearing Loss, Noise-Induced/pathology , JNK Mitogen-Activated Protein Kinases/metabolism , Vestibulocochlear Nerve Injuries/pathology , Animals , Animals, Newborn , Apoptosis , Cell Death/drug effects , Cell Death/physiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Kanamycin/toxicity , Male , Mice , Mice, Inbred CBA , Mice, Transgenic , Noise/adverse effects , Protein Synthesis Inhibitors/toxicity , Time Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Vestibulocochlear Nerve Injuries/chemically induced
8.
Biol Open ; 4(4): 516-26, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25770185

ABSTRACT

Hair cells of the organ of Corti (OC) of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle. Consistent with strong apical polarity, the hair cell apex displays prominent actin and microtubule cytoskeletons. The Rho GTPase Cdc42 regulates cytoskeletal dynamics and polarization of various cell types, and, thus, serves as a candidate regulator of hair cell polarity. We have here induced Cdc42 inactivation in the late-embryonic OC. We show the role of Cdc42 in the establishment of planar polarity of hair cells and in cellular patterning. Abnormal planar polarity was displayed as disturbances in hair bundle orientation and morphology and in kinocilium/basal body positioning. These defects were accompanied by a disorganized cell-surface microtubule network. Atypical protein kinase C (aPKC), a putative Cdc42 effector, colocalized with Cdc42 at the hair cell apex, and aPKC expression was altered upon Cdc42 depletion. Our data suggest that Cdc42 together with aPKC is part of the machinery establishing hair cell planar polarity and that Cdc42 acts on polarity through the cell-surface microtubule network. The data also suggest that defects in apical polarization are influenced by disturbed cellular patterning in the OC. In addition, our data demonstrates that Cdc42 is required for stereociliogenesis in the immature cochlea.

9.
Aging (Albany NY) ; 6(6): 496-510, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25063730

ABSTRACT

Supporting cells (SCs) of the cochlear (auditory) and vestibular (balance) organs hold promise as a platform for therapeutic regeneration of the sensory hair cells. Prior data have shown proliferative restrictions of adult SCs forced to re-enter the cell cycle. By comparing juvenile and adult SCs in explant cultures, we have here studied how proliferative restrictions are linked with DNA damage signaling. Cyclin D1 overexpression, used to stimulate cell cycle re-entry, triggered higher proliferative activity of juvenile SCs. Phosphorylated form of histone H2AX (γH2AX) and p53 binding protein 1 (53BP1) were induced in a foci-like pattern in SCs of both ages as an indication of DNA double-strand break formation and activated DNA damage response. Compared to juvenile SCs, γH2AX and the repair protein Rad51 were resolved with slower kinetics in adult SCs, accompanied by increased apoptosis. Consistent with thein vitro data, in a Rb mutant mouse model in vivo, cell cycle re-entry of SCs was associated with γH2AX foci induction. In contrast to cell cycle reactivation, pharmacological stimulation of SC-to-hair-cell transdifferentiation in vitro did not trigger γH2AX. Thus, DNA damage and its prolonged resolution are critical barriers in the efforts to stimulate proliferation of the adult inner ear SCs.


Subject(s)
Adult Stem Cells/cytology , Cell Proliferation/physiology , DNA Damage/physiology , Labyrinth Supporting Cells/cytology , Signal Transduction/physiology , Animals , Mice , Organ Culture Techniques
10.
J Assoc Res Otolaryngol ; 15(6): 975-92, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25074370

ABSTRACT

Hair cell death is a major cause of hearing impairment. Preservation of surface barrier upon hair cell loss is critical to prevent leakage of potassium-rich endolymph into the organ of Corti and to prevent expansion of cellular damage. Understanding of wound healing in this cytoarchitecturally complex organ requires ultrastructural 3D visualization. Powered by the serial block-face scanning electron microscopy, we penetrate into the cell biological mechanisms in the acute response of outer hair cells and glial-like Deiters' cells to ototoxic trauma in vivo. We show that Deiters' cells function as phagocytes. Upon trauma, their phalangeal processes swell and the resulting close cellular contacts allow engulfment of apoptotic cell debris. Apical domains of dying hair cells are eliminated from the inner ear sensory epithelia, an event thought to depend on supporting cells' actomyosin contractile activity. We show that in the case of apoptotic outer hair cells of the organ of Corti, elimination of their apices is preceded by strong cell body shrinkage, emphasizing the role of the dying cell itself in the cleavage. Our data reveal that the resealing of epithelial surface by junctional extensions of Deiters' cells is dynamically reinforced by newly polymerized F-actin belts. By analyzing Cdc42-inactivated Deiters' cells with defects in actin dynamics and surface closure, we show that compromised barrier integrity shifts hair cell death from apoptosis to necrosis and leads to expanded hair cell and nerve fiber damage. Our results have implications concerning therapeutic protective and regenerative interventions, because both interventions should maintain barrier integrity.


Subject(s)
Organ of Corti/physiology , Organ of Corti/ultrastructure , Wound Healing , Actins/metabolism , Animals , Apoptosis , Female , Male , Mice , Microscopy, Electron, Scanning , Phagocytosis
11.
Plant Methods ; 9(1): 6, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23406322

ABSTRACT

Public genomic databases have provided new directions for molecular marker development and initiated a shift in the types of PCR-based techniques commonly used in plant science. Alongside commonly used arbitrarily amplified DNA markers, other methods have been developed. Targeted fingerprinting marker techniques are based on the well-established practices of arbitrarily amplified DNA methods, but employ novel methodological innovations such as the incorporation of gene or promoter elements in the primers. These markers provide good reproducibility and increased resolution by the concurrent incidence of dominant and co-dominant bands. Despite their promising features, these semi-random markers suffer from possible problems of collision and non-homology analogous to those found with randomly generated fingerprints. Transposable elements, present in abundance in plant genomes, may also be used to generate fingerprints. These markers provide increased genomic coverage by utilizing specific targeted sites and produce bands that mostly seem to be homologous. The biggest drawback with most of these techniques is that prior genomic information about retrotransposons is needed for primer design, prohibiting universal applications. Another class of recently developed methods exploits length polymorphism present in arrays of multi-copy gene families such as cytochrome P450 and ß-tubulin genes to provide cross-species amplification and transferability. A specific class of marker makes use of common features of plant resistance genes to generate bands linked to a given phenotype, or to reveal genetic diversity. Conserved DNA-based strategies have limited genome coverage and may fail to reveal genetic diversity, while resistance genes may be under specific evolutionary selection. Markers may also be generated from functional and/or transcribed regions of the genome using different gene-targeting approaches coupled with the use of RNA information. Such techniques have the potential to generate phenotypically linked functional markers, especially when fingerprints are generated from the transcribed or expressed region of the genome. It is to be expected that these recently developed techniques will generate larger datasets, but their shortcomings should also be acknowledged and carefully investigated.

12.
Sci Rep ; 2: 978, 2012.
Article in English | MEDLINE | ID: mdl-23248743

ABSTRACT

Cdc42 regulates the initial establishment of cytoskeletal and junctional structures, but only little is known about its role at later stages of cellular differentiation. We studied Cdc42's role in vivo in auditory supporting cells, epithelial cells with high structural complexity. Cdc42 inactivation was induced early postnatally using the Cdc42(loxP/loxP);Fgfr3-iCre-ER(T2) mice. Cdc42 depletion impaired elongation of adherens junctions and F-actin belts, leading to constriction of the sensory epithelial surface. Fragmented F-actin belts, junctions containing ectopic lumens and misexpression of a basolateral membrane protein in the apical domain were observed. These defects and changes in aPKCλ/ι expression suggested that apical polarization is impaired. Following a lesion at adulthood, supporting cells with Cdc42 loss-induced maturational defects collapsed and failed to remodel F-actin belts, a process that is critical to scar formation. Thus, Cdc42 is required for structural differentiation of auditory supporting cells and this proper maturation is necessary for wound healing in adults.


Subject(s)
Hair Cells, Auditory/pathology , Hair Cells, Auditory/physiology , Organ of Corti/injuries , Organ of Corti/physiopathology , Wound Healing/physiology , cdc42 GTP-Binding Protein/metabolism , Aging/pathology , Animals , Cells, Cultured , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...