Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomed Nanotechnol ; 17(8): 1699-1710, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34544546

ABSTRACT

The present study describes the use of fucoidan, a negative sulfated polysaccharide, as a coating material for the development of liposomes targeted to macrophages infected with Mycobacterium tuberculosis. First, fucoidan was chemically modified to obtain a hydrophobized-fucoidan derivative (cholesteryl-fucoidan) using a two-step microwave-assisted (µW) method. The total reaction time was decreased from 14 hours to 1 hour while maintaining the overall yield. Cholesterylfucoidan was then used to prepare surface-modified liposomes containing usnic acid (UA-LipoFuc), an antimicrobial lichen derivative. UA-LipoFuc was evaluated for mean particle size, polydispersity index (PDI), surface charge (ζ), and UA encapsulation efficiency. In addition, a cytotoxicity study, competition assay and an evaluation of antimycobacterial activity against macrophages infected with M. tuberculosis (H37Ra) were performed. When the amount of fucoidan was increased (from 5 to 20 mg), vesicle size increased (from 168 ± 2.82 nm to 1.18 ± 0.01 µm). Changes in from +20 ± 0.41 mV for uncoated liposomes to -5.41 ± 0.23 mV for UA-LipoFuc suggested that the fucoidan was placed on the surface of the liposomes. UA-LipoFuc exhibited a lower IC50 (8.26 ± 1.11 µM) than uncoated liposomes (18.37 ± 3.34 µM), probably due to its higher uptake. UA-LipoFuc5 was internalized through the C-type carbohydrate recognition domain of the cell membrane. Finally, usnic acid, both in its free form and encapsulated in fucoidan-coated liposomes (UA-LipoFuc5), was effective against infected macrophages. Hence, this preliminary investigation suggests that encapsulated usnic acid will aid in further studies related to infected macrophages and may be a potential option for tuberculosis treatment.


Subject(s)
Anti-Infective Agents , Mycobacterium tuberculosis , Benzofurans , Liposomes , Macrophages , Polysaccharides
2.
Eur J Med Chem ; 220: 113472, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-33940463

ABSTRACT

A total of forty-three compounds were synthesized, including thirty-two new ones. Among those compounds, seventeen were selected and tested on human tumor cell lines: PC-3 (prostate adenocarcinoma), HCT-116 (colorectal tumor), NCIH-460 (lung carcinoma), SKMEL-103 (melanoma) and AGP-01 (gastric tumor). Alkynylated 1,2,4-oxadiazoles 2m, 3g and 3k exhibited antiproliferative activities against NCIH-460 in culture. Alkynylated N-cyclohexyl-1,2,4-oxadiazoles 3a-m and bis-heterocycle glucoglycero-1,2,3-triazole-N-cyclohexyl-1,2,4-oxadiazole derivatives 5a-k and 6-11 were evaluated for their in vitro efficacy towards Mycobacterium tuberculosis (Mtb) H37Ra and H37Rv strains. In general, glycerosugars conjugated to 1,2,4-oxadiazole via a 1,2,3-triazole linkage (5a, 5e, 5j, 5k, and 7) showed in vitro inhibitory activity against Mtb (H37Rv). The largest molecules bis-triazoles 10 and 11, proved inactive against TB. Probably, the absence of the N-cyclohexyl group in compound 8 and 1,2,4-oxadiazole nucleus in compound 9 were responsible for its low activity. Glucoglycero-triazole-oxadiazole derivatives 5e (10 µM) and 7 (23.9 µM) were the most promising antitubercular compounds, showing a better selective index than when tested against RAW 264.7 and HepG2 cells. Vero cell were used to investigate cytotoxicity of compounds 5a, 5h, 5j, 5k, and these compounds showed good cell viability. Further, in silico studies were performed for most active compounds (5e and 7) with potential drug targets, DprE1 and InhA of Mtb to understand possible interactions aided with molecular dynamic simulation (100ns).


Subject(s)
Antineoplastic Agents/pharmacology , Antitubercular Agents/pharmacology , Carcinoma, Squamous Cell/drug therapy , Glycoconjugates/pharmacology , Lung Neoplasms/drug therapy , Mycobacterium tuberculosis/drug effects , Oxadiazoles/chemistry , Alkynes/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Discovery , Glycoconjugates/chemical synthesis , Glycoconjugates/chemistry , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Triazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL