Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38915639

ABSTRACT

Incomplete penetrance, or absence of disease phenotype in an individual with a disease-associated variant, is a major challenge in variant interpretation. Studying individuals with apparent incomplete penetrance can shed light on underlying drivers of altered phenotype penetrance. Here, we investigate clinically relevant variants from ClinVar in 807,162 individuals from the Genome Aggregation Database (gnomAD), demonstrating improved representation in gnomAD version 4. We then conduct a comprehensive case-by-case assessment of 734 predicted loss of function variants (pLoF) in 77 genes associated with severe, early-onset, highly penetrant haploinsufficient disease. We identified explanations for the presumed lack of disease manifestation in 701 of the variants (95%). Individuals with unexplained lack of disease manifestation in this set of disorders rarely occur, underscoring the need and power of deep case-by-case assessment presented here to minimize false assignments of disease risk, particularly in unaffected individuals with higher rates of secondary properties that result in rescue.

2.
bioRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38645217

ABSTRACT

Differential expression (DE) analysis is a widely used method for identifying genes that are functionally relevant for an observed phenotype or biological response. However, typical DE analysis includes selection of genes based on a threshold of fold change in expression under the implicit assumption that all genes are equally sensitive to dosage changes of their transcripts. This tends to favor highly variable genes over more constrained genes where even small changes in expression may be biologically relevant. To address this limitation, we have developed a method to recalibrate each gene's differential expression fold change based on genetic expression variance observed in the human population. The newly established metric ranks statistically differentially expressed genes not by nominal change of expression, but by relative change in comparison to natural dosage variation for each gene. We apply our method to RNA sequencing datasets from rare disease and in-vitro stimulus response experiments. Compared to the standard approach, our method adjusts the bias in discovery towards highly variable genes, and enriches for pathways and biological processes related to metabolic and regulatory activity, indicating a prioritization of functionally relevant driver genes. With that, our method provides a novel view on DE and contributes towards bridging the existing gap between statistical and biological significance. We believe that this approach will simplify the identification of disease causing genes and enhance the discovery of therapeutic targets.

3.
PLoS One ; 19(3): e0291960, 2024.
Article in English | MEDLINE | ID: mdl-38478511

ABSTRACT

Common variants affecting mRNA splicing are typically identified though splicing quantitative trait locus (sQTL) mapping and have been shown to be enriched for GWAS signals by a similar degree to eQTLs. However, the specific splicing changes induced by these variants have been difficult to characterize, making it more complicated to analyze the effect size and direction of sQTLs, and to determine downstream splicing effects on protein structure. In this study, we catalogue sQTLs using exon percent spliced in (PSI) scores as a quantitative phenotype. PSI is an interpretable metric for identifying exon skipping events and has some advantages over other methods for quantifying splicing from short read RNA sequencing. In our set of sQTL variants, we find evidence of selective effects based on splicing effect size and effect direction, as well as exon symmetry. Additionally, we utilize AlphaFold2 to predict changes in protein structure associated with sQTLs overlapping GWAS traits, highlighting a potential new use-case for this technology for interpreting genetic effects on traits and disorders.


Subject(s)
Alternative Splicing , Polymorphism, Single Nucleotide , RNA Splicing/genetics , Proteins/genetics , Exons/genetics
4.
Cell ; 187(5): 1059-1075, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428388

ABSTRACT

Human genetics has emerged as one of the most dynamic areas of biology, with a broadening societal impact. In this review, we discuss recent achievements, ongoing efforts, and future challenges in the field. Advances in technology, statistical methods, and the growing scale of research efforts have all provided many insights into the processes that have given rise to the current patterns of genetic variation. Vast maps of genetic associations with human traits and diseases have allowed characterization of their genetic architecture. Finally, studies of molecular and cellular effects of genetic variants have provided insights into biological processes underlying disease. Many outstanding questions remain, but the field is well poised for groundbreaking discoveries as it increases the use of genetic data to understand both the history of our species and its applications to improve human health.


Subject(s)
Human Genetics , Humans , Genetic Variation , Multifactorial Inheritance , Phenotype
5.
bioRxiv ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38464330

ABSTRACT

Genomic loci associated with common traits and diseases are typically non-coding and likely impact gene expression, sometimes coinciding with rare loss-of-function variants in the target gene. However, our understanding of how gradual changes in gene dosage affect molecular, cellular, and organismal traits is currently limited. To address this gap, we induced gradual changes in gene expression of four genes using CRISPR activation and inactivation. Downstream transcriptional consequences of dosage modulation of three master trans-regulators associated with blood cell traits (GFI1B, NFE2, and MYB) were examined using targeted single-cell multimodal sequencing. We showed that guide tiling around the TSS is the most effective way to modulate cis gene expression across a wide range of fold-changes, with further effects from chromatin accessibility and histone marks that differ between the inhibition and activation systems. Our single-cell data allowed us to precisely detect subtle to large gene expression changes in dozens of trans genes, revealing that many responses to dosage changes of these three TFs are non-linear, including non-monotonic behaviours, even when constraining the fold-changes of the master regulators to a copy number gain or loss. We found that the dosage properties are linked to gene constraint and that some of these non-linear responses are enriched for disease and GWAS genes. Overall, our study provides a straightforward and scalable method to precisely modulate gene expression and gain insights into its downstream consequences at high resolution.

6.
Ann Am Thorac Soc ; 21(6): 884-894, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38335160

ABSTRACT

Rationale: Chronic obstructive pulmonary disease (COPD) and emphysema are associated with endothelial damage and altered pulmonary microvascular perfusion. The molecular mechanisms underlying these changes are poorly understood in patients, in part because of the inaccessibility of the pulmonary vasculature. Peripheral blood mononuclear cells (PBMCs) interact with the pulmonary endothelium. Objectives: To test the association between gene expression in PBMCs and pulmonary microvascular perfusion in COPD. Methods: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study recruited two independent samples of COPD cases and controls with ⩾10 pack-years of smoking history. In both samples, pulmonary microvascular blood flow, pulmonary microvascular blood volume, and mean transit time were assessed on contrast-enhanced magnetic resonance imaging, and PBMC gene expression was assessed by microarray. Additional replication was performed in a third sample with pulmonary microvascular blood volume measures on contrast-enhanced dual-energy computed tomography. Differential expression analyses were adjusted for age, gender, race/ethnicity, educational attainment, height, weight, smoking status, and pack-years of smoking. Results: The 79 participants in the discovery sample had a mean age of 69 ± 6 years, 44% were female, 25% were non-White, 34% were current smokers, and 66% had COPD. There were large PBMC gene expression signatures associated with pulmonary microvascular perfusion traits, with several replicated in the replication sets with magnetic resonance imaging (n = 47) or dual-energy contrast-enhanced computed tomography (n = 157) measures. Many of the identified genes are involved in inflammatory processes, including nuclear factor-κB and chemokine signaling pathways. Conclusions: PBMC gene expression in nuclear factor-κB, inflammatory, and chemokine signaling pathways was associated with pulmonary microvascular perfusion in COPD, potentially offering new targetable candidates for novel therapies.


Subject(s)
Leukocytes, Mononuclear , Magnetic Resonance Imaging , Pulmonary Disease, Chronic Obstructive , Humans , Female , Male , Aged , Leukocytes, Mononuclear/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/physiopathology , Middle Aged , Lung/blood supply , Lung/diagnostic imaging , Lung/metabolism , Atherosclerosis/genetics , Atherosclerosis/ethnology , Case-Control Studies , United States/epidemiology , Aged, 80 and over , Gene Expression , Tomography, X-Ray Computed , Pulmonary Circulation , Smoking , Microcirculation
7.
bioRxiv ; 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38260658

ABSTRACT

Understanding the role of transcription and transcription factors in cellular identity and disease, such as cancer and autoimmunity, is essential. However, comprehensive data resources for cell line-specific transcription factor-to-target gene annotations are currently limited. To address this, we developed a straightforward method to define regulons that capture the cell-specific aspects of TF binding and transcript expression levels. By integrating cellular transcriptome and transcription factor binding data, we generated regulons for four common cell lines comprising both proximal and distal cell line-specific regulatory events. Through systematic benchmarking involving transcription factor knockout experiments, we demonstrated performance on par with state-of-the-art methods, with our method being easily applicable to other cell types of interest. We present case studies using three cancer single-cell datasets to showcase the utility of these cell-type-specific regulons in exploring transcriptional dysregulation. In summary, this study provides a valuable tool and a resource for systematically exploring cell line-specific transcriptional regulations, emphasizing the utility of network analysis in deciphering disease mechanisms.

8.
Am J Hum Genet ; 111(1): 133-149, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181730

ABSTRACT

Bulk-tissue molecular quantitative trait loci (QTLs) have been the starting point for interpreting disease-associated variants, and context-specific QTLs show particular relevance for disease. Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age, and other phenotypic variables in multi-omic, longitudinal data from the blood of individuals of diverse ancestries. By modeling the interaction between genotype and estimated cell-type proportions, we demonstrate that cell-type iQTLs could be considered as proxies for cell-type-specific QTL effects, particularly for the most abundant cell type in the tissue. The interpretation of age iQTLs, however, warrants caution because the moderation effect of age on the genotype and molecular phenotype association could be mediated by changes in cell-type composition. Finally, we show that cell-type iQTLs contribute to cell-type-specific enrichment of diseases that, in combination with additional functional data, could guide future functional studies. Overall, this study highlights the use of iQTLs to gain insights into the context specificity of regulatory effects.


Subject(s)
Gene Expression Regulation , Quantitative Trait Loci , Humans , Quantitative Trait Loci/genetics , Genotype , Phenotype
9.
BMC Genomics ; 24(1): 790, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114913

ABSTRACT

Transcriptome studies disentangle functional mechanisms of gene expression regulation and may elucidate the underlying biology of disease processes. However, the types of tissues currently collected typically assay a single post-mortem timepoint or are limited to investigating cell types found in blood. Noninvasive tissues may improve disease-relevant discovery by enabling more complex longitudinal study designs, by capturing different and potentially more applicable cell types, and by increasing sample sizes due to reduced collection costs and possible higher enrollment from vulnerable populations. Here, we develop methods for sampling noninvasive biospecimens, investigate their performance across commercial and in-house library preparations, characterize their biology, and assess the feasibility of using noninvasive tissues in a multitude of transcriptomic applications. We collected buccal swabs, hair follicles, saliva, and urine cell pellets from 19 individuals over three to four timepoints, for a total of 300 unique biological samples, which we then prepared with replicates across three library preparations, for a final tally of 472 transcriptomes. Of the four tissues we studied, we found hair follicles and urine cell pellets to be most promising due to the consistency of sample quality, the cell types and expression profiles we observed, and their performance in disease-relevant applications. This is the first study to thoroughly delineate biological and technical features of noninvasive samples and demonstrate their use in a wide array of transcriptomic and clinical analyses. We anticipate future use of these biospecimens will facilitate discovery and development of clinical applications.


Subject(s)
Gene Expression Profiling , Transcriptome , Humans , Longitudinal Studies , Gene Expression Regulation , Saliva
SELECTION OF CITATIONS
SEARCH DETAIL