Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(2): e0299543, 2024.
Article in English | MEDLINE | ID: mdl-38422035

ABSTRACT

Circulating concentration of arginine, alanine, aspartate, isoleucine, leucine, phenylalanine, proline, tyrosine, taurine and valine are increased in subjects with insulin resistance, which could in part be attributed to the presence of single nucleotide polymorphisms (SNPs) within genes associated with amino acid metabolism. Thus, the aim of this work was to develop a Genetic Risk Score (GRS) for insulin resistance in young adults based on SNPs present in genes related to amino acid metabolism. We performed a cross-sectional study that included 452 subjects over 18 years of age. Anthropometric, clinical, and biochemical parameters were assessed including measurement of serum amino acids by high performance liquid chromatography. Eighteen SNPs were genotyped by allelic discrimination. Of these, ten were found to be in Hardy-Weinberg equilibrium, and only four were used to construct the GRS through multiple linear regression modeling. The GRS was calculated using the number of risk alleles of the SNPs in HGD, PRODH, DLD and SLC7A9 genes. Subjects with high GRS (≥ 0.836) had higher levels of glucose, insulin, homeostatic model assessment- insulin resistance (HOMA-IR), total cholesterol and triglycerides, and lower levels of arginine than subjects with low GRS (p < 0.05). The application of a GRS based on variants within genes associated to amino acid metabolism may be useful for the early identification of subjects at increased risk of insulin resistance.


Subject(s)
Insulin Resistance , Young Adult , Humans , Adolescent , Adult , Insulin Resistance/genetics , Cross-Sectional Studies , Genetic Risk Score , Alanine , Arginine
2.
EJIFCC ; 31(1): 56-64, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32256289

ABSTRACT

Urinalysis is one of the most important tests in the clinical laboratory. In this study we assessed the use of chemical preservative in urinalysis during preanalytical phase. Fifty first morning urine samples from medical laboratory patients were collected and stored with and without chemical preservative. Difference between medians were analyzed using Wilcoxon signed rank test for glucose, bilirubin, ketones, specific gravity, erythrocytes, pH, proteins, nitrites, leukocytes using urine strips; and on leukocytes, erythrocytes, epithelial cells, and bacteria in the urinary sediment, at 90 minutes after sampling. Our results showed that the specific gravity and the pH values increased in samples with chemical preservative in urine strip tests. Concerning urinary sediment analysis no differences were observed in the studied parameters between samples with and without chemical preservative. We suggest that the effect on urine pH is due to the chemical nature of the substances in the preservative. Thus, we caution about the use of chemical preservatives in samples to be analyzed within short time (i.e. less than 1.5 - 2 hours) after sample collection. Avoid chemical preservatives, in this situation, could help avoid changes in the pH and specific gravity, which could eventually help in maintaining quality in the preanalytical phase of urinalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...