Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Toxicology ; 487: 153467, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36842454

ABSTRACT

Parkinson's disease is a severe neurodegenerative disease. Several environmental contaminants such as pesticides have been suspected to favor the appearance of this pathology. The protein DJ-1 (or Park7) protects against the development of Parkinson's disease. Thus, the possible inhibitory effects of about a hundred pesticides on human DJ-1 have been studied. We identified fifteen of them as strong inhibitors of DJ-1 with IC50 values between 0.02 and 30 µM. Thiocarbamates are particularly good inhibitors, as shown by thiram that acts as an irreversible inhibitor of an esterase activity of DJ-1 with an IC50 value of 0.02 µM. Thiram was also found as a good inhibitor of the protective activity of DJ-1 against glycation. Such inhibitory effects could be one of the various biological effects of these pesticides that may explain their involvement in the development of Parkinson's disease.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Pesticides , Humans , Parkinson Disease/pathology , Pesticides/toxicity , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism , Thiram
2.
Antioxidants (Basel) ; 11(5)2022 05 23.
Article in English | MEDLINE | ID: mdl-35624894

ABSTRACT

The Aryl hydrocarbon Receptor (AhR) is a xenobiotic sensor in vertebrates, regulating the metabolism of its own ligands. However, no ligand has been identified to date for any AhR in invertebrates. In C. elegans, the AhR ortholog, AHR-1, displays physiological functions. Therefore, we compared the transcriptomic and metabolic profiles of worms expressing AHR-1 or not and investigated the putative panel of chemical AHR-1 modulators. The metabolomic profiling indicated a role for AHR-1 in amino acids, carbohydrates, and fatty acids metabolism. The transcriptional profiling in neurons expressing AHR-1, identified 95 down-regulated genes and 76 up-regulated genes associated with neuronal and metabolic functions in the nervous system. A gene reporter system allowed us to identify several AHR-1 modulators including bacterial, dietary, or environmental compounds. These results shed new light on the biological functions of AHR-1 in C. elegans and perspectives on the evolution of the AhR functions across species.

3.
Antioxidants (Basel) ; 11(4)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35453298

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose activity can be modulated by polyphenols, such as curcumin. AhR and curcumin have evolutionarily conserved effects on aging. Here, we investigated whether and how the AhR mediates the anti-aging effects of curcumin across species. Using a combination of in vivo, in vitro, and in silico analyses, we demonstrated that curcumin has AhR-dependent or -independent effects in a context-specific manner. We found that in Caenorhabditis elegans, AhR mediates curcumin-induced lifespan extension, most likely through a ligand-independent inhibitory mechanism related to its antioxidant activity. Curcumin also showed AhR-independent anti-aging activities, such as protection against aggregation-prone proteins and oxidative stress in C. elegans and promotion of the migratory capacity of human primary endothelial cells. These AhR-independent effects are largely mediated by the Nrf2/SKN-1 pathway.

4.
Biomolecules ; 12(3)2022 02 22.
Article in English | MEDLINE | ID: mdl-35327534

ABSTRACT

Caenorhabditis elegans is an important model used for many aspects of biological research. Its genome contains 76 genes coding for cytochromes P450 (P450s), and few data about the biochemical properties of those P450s have been published so far. However, an increasing number of articles have appeared on their involvement in the metabolism of xenobiotics and endobiotics such as fatty acid derivatives and steroids. Moreover, the implication of some P450s in various biological functions of C. elegans, such as survival, dauer formation, life span, fat content, or lipid metabolism, without mention of the precise reaction catalyzed by those P450s, has been reported in several articles. This review presents the state of our knowledge about C. elegans P450s.


Subject(s)
Caenorhabditis elegans , Xenobiotics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cytochrome P-450 Enzyme System/metabolism , Genome , Steroids
5.
Annu Rev Pharmacol Toxicol ; 62: 383-404, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34499523

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a transcriptional factor that regulates multiple functions following its activation by a variety of ligands, including xenobiotics, natural products, microbiome metabolites, and endogenous molecules. Because of this diversity, the AhR constitutes an exposome receptor. One of its main functions is to regulate several lines of defense against chemical insults and bacterial infections. Indeed, in addition to its well-established detoxication function, it has several functions at physiological barriers, and it plays a critical role in immunomodulation. The AhR is also involved in the development of several organs and their homeostatic maintenance. Its activity depends on the type of ligand and on the time frame of the receptor activation, which can be either sustained or transient, leading in some cases to opposite modes of regulations as illustrated in the regulation of different cancer pathways. The development of selective modulators and their pharmacological characterization are important areas of research.


Subject(s)
Exposome , Receptors, Aryl Hydrocarbon , Homeostasis , Humans , Ligands , Receptors, Aryl Hydrocarbon/metabolism , Xenobiotics/metabolism
7.
Biochim Open ; 7: 1-9, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30003042

ABSTRACT

Animals and humans are exposed each day to a multitude of chemicals in the air, water and food. They have developed a battery of enzymes and transporters that facilitate the biotransformation and elimination of these compounds. Moreover, a majority of these enzymes and transporters are inducible due to the activation of xenobiotic receptors which act as transcription factors for the regulation of their target genes (such as xenobiotic metabolizing enzymes, see below §4 for the AhR). These receptors include several members of the nuclear/steroid receptor family (CAR for Constitutive Androstane Receptor, PXR for Pregnane X Receptor) but also the Aryl hydrocarbon Receptor or AhR, a member of the bHLH-PAS family (basic Helix-Loop-Helix - Period/ARNT/Single minded). In addition to the regulation of xenobiotic metabolism, numerous alternative functions have been characterized for the AhR since its discovery. These alternative functions will be described in this review along with its endogenous functions as revealed by experiments performed on knock-out animals.

SELECTION OF CITATIONS
SEARCH DETAIL