Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 43(11): 2088-2098, 2023 11.
Article in English | MEDLINE | ID: mdl-37675634

ABSTRACT

Megakaryocytes are commonly known as large, polyploid, bone marrow resident cells that contribute to hemostasis through the production of platelets. Soon after their discovery in the 19th century, megakaryocytes were described in tissue locations other than the bone marrow, specifically in the lungs and the blood circulation. However, the localization of megakaryocytes in the lungs and the contribution of lung megakaryocytes to the general platelet pool has only recently been appreciated. Moreover, the conception of megakaryocytes as uniform cells with the sole purpose of platelet production has been challenged. Here, we review the literature on megakaryocyte cell identity and location with a special focus on recent observations of megakaryocyte subpopulations identified by transcriptomic analyses.


Subject(s)
Blood Platelets , Megakaryocytes , Bone Marrow , Bone Marrow Cells , Thrombopoiesis/genetics
2.
Blood Adv ; 6(12): 3697-3702, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35452514

ABSTRACT

Immune complexes form in systemic disorders such as rheumatological, autoimmune, and allergic diseases or in response to infections or medications. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) adenoviral vector vaccines have been associated with rare yet serious thrombotic complications in the brain due to the formation of immune complexes that activate platelets. There are currently no data visualizing the interplay of platelets with leukocytes and the brain vasculature endothelium in response to immune complexes. This is in part due to the absence of FcγRIIA in mice, a receptor for immune complexes implicated in these thrombotic incidents. Here, we describe and illustrate events at the cellular level that take place in the brain vasculature in response to systemic administration of surrogate immune complexes. We used Ly6gCre+/-::Rosa26-TdT+/-::CD41-YFP+/- mice expressing the FcγRIIA transgene and fluorescence in neutrophils and platelets. Using real-time videomicroscopy to capture high-velocity events in conjunction with unbiased computer-assisted analyses, we provide images and quantifications of the cellular responses downstream of FcγRIIA stimulation. We observed transient and stable platelet-neutrophil interactions, platelets forming thrombi, and neutrophil adhesion to blood vessel walls. This imaging approach in a quadruple transgenic animal model can be used for the study of the pathogenic roles of immune complexes in disease.


Subject(s)
COVID-19 , Thrombosis , Animals , Antigen-Antibody Complex , Blood Platelets/pathology , Mice , Mice, Transgenic , Neutrophils , SARS-CoV-2
3.
Blood ; 138(25): 2607-2620, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34293122

ABSTRACT

In addition to their hemostatic role, platelets play a significant role in immunity. Once activated, platelets release extracellular vesicles (EVs) formed by the budding of their cytoplasmic membranes. Because of their heterogeneity, platelet EVs (PEVs) are thought to perform diverse functions. It is unknown, however, whether the proteasome is transferred from platelets to PEVs or whether its function is retained. We hypothesized that functional protein processing and antigen presentation machinery are transferred to PEVs by activated platelets. Using molecular and functional assays, we found that the active 20S proteasome was enriched in PEVs, along with major histocompatibility complex class I (MHC-I) and lymphocyte costimulatory molecules (CD40L and OX40L). Proteasome-containing PEVs were identified in healthy donor blood, but did not increase in platelet concentrates that caused adverse transfusion reactions. They were augmented, however, after immune complex injections in mice. The complete biodistribution of murine PEVs after injection into mice revealed that they principally reached lymphoid organs, such as spleen and lymph nodes, in addition to the bone marrow, and to a lesser extent, liver and lungs. The PEV proteasome processed exogenous ovalbumin (OVA) and loaded its antigenic peptide onto MHC-I molecules, which promoted OVA-specific CD8+ T-lymphocyte proliferation. These results suggest that PEVs contribute to adaptive immunity through cross-presentation of antigens and have privileged access to immune cells through the lymphatic system, a tissue location that is inaccessible to platelets.


Subject(s)
Blood Platelets/immunology , Extracellular Vesicles/immunology , Histocompatibility Antigens Class I/immunology , Proteasome Endopeptidase Complex/immunology , Animals , Antigen Presentation , Blood Platelets/chemistry , Extracellular Vesicles/chemistry , Histocompatibility Antigens Class I/analysis , Humans , Mice , Mice, Inbred C57BL , Proteasome Endopeptidase Complex/analysis
4.
Sci Transl Med ; 13(581)2021 02 17.
Article in English | MEDLINE | ID: mdl-33597264

ABSTRACT

The accumulation of DNA and nuclear components in blood and their recognition by autoantibodies play a central role in the pathophysiology of systemic lupus erythematosus (SLE). Despite the efforts, the sources of circulating autoantigens in SLE are still unclear. Here, we show that in SLE, platelets release mitochondrial DNA, the majority of which is associated with the extracellular mitochondrial organelle. Mitochondrial release in patients with SLE correlates with platelet degranulation. This process requires the stimulation of platelet FcγRIIA, a receptor for immune complexes. Because mice lack FcγRIIA and murine platelets are completely devoid of receptor capable of binding IgG-containing immune complexes, we used transgenic mice expressing FcγRIIA for our in vivo investigations. FcγRIIA expression in lupus-prone mice led to the recruitment of platelets in kidneys and to the release of mitochondria in vivo. Using a reporter mouse with red fluorescent protein targeted to the mitochondrion, we confirmed platelets as a source of extracellular mitochondria driven by FcγRIIA and its cosignaling by the fibrinogen receptor α2bß3 in vivo. These findings suggest that platelets might be a key source of mitochondrial antigens in SLE and might be a therapeutic target for treating SLE.


Subject(s)
Blood Platelets , Lupus Erythematosus, Systemic , Animals , Antigen-Antibody Complex , Autoantibodies/metabolism , Blood Platelets/metabolism , Humans , Lupus Erythematosus, Systemic/metabolism , Mice , Mitochondria , Receptors, IgG/metabolism
5.
Platelets ; 32(3): 340-351, 2021 Apr 03.
Article in English | MEDLINE | ID: mdl-32597341

ABSTRACT

The immune system is comprised of two principal interconnected components called innate and adaptive immunity. While the innate immune system mounts a nonspecific response that provides protection against the spread of foreign pathogens, the adaptive immune system has developed to specifically recognize a given pathogen and lead to immunological memory. Platelets are small fragments produced from megakaryocytes in bone marrow and lungs. They circulate throughout the blood to monitor the integrity of the vasculature and to prevent bleeding. Given their large repertoire of immune receptors and inflammatory molecules, platelets and megakaryocytes can contribute to both innate and adaptive immunity. In adaptive immunity, platelets and megakaryocytes can process and present antigens to lymphocytes. Moreover, platelets, via FcγRIIA, rapidly respond to pathogens in an immune host when antibodies are present. This manuscript reviews the reported contributions of platelets and megakaryocytes with emphasis on antigen presentation and antibody response in adaptive immunity.


Subject(s)
Adaptive Immunity/immunology , Blood Platelets/metabolism , Megakaryocytes/metabolism , Humans
6.
Blood ; 136(25): 2933-2945, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33331924

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease characterized by deposits of immune complexes (ICs) in organs and tissues. The expression of FcγRIIA by human platelets, which is their unique receptor for immunoglobulin G antibodies, positions them to ideally respond to circulating ICs. Whereas chronic platelet activation and thrombosis are well-recognized features of human SLE, the exact mechanisms underlying platelet activation in SLE remain unknown. Here, we evaluated the involvement of FcγRIIA in the course of SLE and platelet activation. In patients with SLE, levels of ICs are associated with platelet activation. Because FcγRIIA is absent in mice, and murine platelets do not respond to ICs in any existing mouse model of SLE, we introduced the FcγRIIA (FCGR2A) transgene into the NZB/NZWF1 mouse model of SLE. In mice, FcγRIIA expression by bone marrow cells severely aggravated lupus nephritis and accelerated death. Lupus onset initiated major changes to the platelet transcriptome, both in FcγRIIA-expressing and nonexpressing mice, but enrichment for type I interferon response gene changes was specifically observed in the FcγRIIA mice. Moreover, circulating platelets were degranulated and were found to interact with neutrophils in FcγRIIA-expressing lupus mice. FcγRIIA expression in lupus mice also led to thrombosis in lungs and kidneys. The model recapitulates hallmarks of human SLE and can be used to identify contributions of different cellular lineages in the manifestations of SLE. The study further reveals a role for FcγRIIA in nephritis and in platelet activation in SLE.


Subject(s)
Autoantibodies/immunology , Blood Platelets/immunology , Immunoglobulin G/immunology , Lupus Nephritis/immunology , Platelet Activation/immunology , Receptors, IgG/immunology , Animals , Autoantibodies/genetics , Blood Platelets/pathology , Disease Models, Animal , Immunoglobulin G/genetics , Lupus Nephritis/genetics , Lupus Nephritis/pathology , Mice , Mice, Transgenic , Platelet Activation/genetics , Receptors, IgG/genetics
7.
Blood Adv ; 4(13): 3011-3023, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32614966

ABSTRACT

During inflammation, steady-state hematopoiesis switches to emergency hematopoiesis to repopulate myeloid cells, with a bias toward the megakaryocytic lineage. Soluble inflammatory cues are thought to be largely responsible for these alterations. However, how these plasma factors rapidly alter the bone marrow (BM) is not understood. Inflammation also drives platelet activation, causing the release of platelet-derived extracellular vesicles (PEVs), which package diverse cargo and reprogram target cells. We hypothesized that PEVs infiltrate the BM, providing a direct mode of communication between the plasma and BM environments. We transfused fluorescent, wild-type (MPL+) platelets into recipient cMpl-/-mice before triggering systemic inflammation. Twenty hours postinfusion, we observed significant infiltration of donor platelet-derived particles in the BM, which we tracked immunophenotypically (MPL+ immunohistochemistry staining) and quantified by flow cytometry. To determine if this phenomenon relates to humans, we extensively characterized both megakaryocyte-derived and PEVs generated in vitro and in vivo, and found enrichment of extracellular vesicles in bone marrow compared with autologous peripheral blood. Last, BM from cMpl-/- mice was cultured in the presence or absence of wild-type (MPL+) PEVs. After 72 hours, flow cytometry revealed increased megakaryocytes only in cultures with added PEVs. The majority of CD41+ cells were bound to PEVs, suggesting a PEV-mediated rescue of megakaryopoiesis. In conclusion, we report for the first time that plasma-residing PEVs infiltrate the BM. Further, PEVs interact with BM cells in vivo and in vitro, causing functional reprogramming that may represent a novel model of inflammation-induced hematopoiesis.


Subject(s)
Blood Platelets , Extracellular Vesicles , Animals , Bone Marrow , Inflammation , Megakaryocytes , Mice
8.
Transfusion ; 59(7): 2403-2414, 2019 07.
Article in English | MEDLINE | ID: mdl-30973972

ABSTRACT

BACKGROUND: Whereas platelet transfusion is a common medical procedure, inflammation still occurs in a fraction of transfused individuals despite the absence of any apparent infectious agents. Platelets can shed membrane vesicles, called extracellular vesicles (EVs), some of which contain mitochondria (mito+EV). With its content of damage-associated molecular pattern (DAMP), the mitochondrion can stimulate the innate immune system. Mitochondrial DNA (mtDNA) is a recognized DAMP detected in the extracellular milieu in numerous inflammatory conditions and in platelet concentrates. We hypothesized that platelet-derived mitochondria encapsulated in EVs may represent a reservoir of mtDNA. STUDY DESIGN AND METHODS: Herein, we explored the implication of mito+EVs in the occurrence of mtDNA quantified in platelet concentrate supernatants that induced or did not induce transfusion adverse reactions. RESULTS: We observed that EVs were abundant in platelet concentrates, and platelet-derived mito+EVs were more abundant in platelet concentrates that induced adverse reactions. A significant correlation (rs = 0.73; p < 0.0001) between platelet-derived mito+EV levels and mtDNA concentrations was found. However, there was a nonsignificant correlation between the levels of EVs without mitochondria and mtDNA concentrations (rs = -0.11; p = 0.5112). The majority of the mtDNA was encapsulated into EVs. CONCLUSION: This study suggests that platelet-derived EVs, such as those that convey mitochondrial DAMPs, may be a useful biomarker for the prediction of potential risk of adverse transfusion reactions. Moreover, our work implies that investigations are necessary to determine whether there is a causal pathogenic role of mitochondrial DAMP encapsulated in EVs as opposed to mtDNA in solution.


Subject(s)
Blood Platelets/metabolism , DNA, Mitochondrial/metabolism , Extracellular Vesicles/metabolism , Platelet Transfusion , Transfusion Reaction/metabolism , Humans , Inflammation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...