Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Chembiochem ; 25(13): e202400201, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38701360

ABSTRACT

Selective modification of peptides is often exploited to improve pharmaceutically relevant properties of bioactive peptides like stability, circulation time, and potency. In Nature, natural products belonging to the class of ribosomally synthesized and post-translationally modified peptides (RiPPs) are known to install a number of highly attractive modifications with high selectivity. These modifications are installed by enzymes guided to the peptide by corresponding leader peptides that are removed as the last step of biosynthesis. Here, we exploit leader peptides and their matching enzymes to investigate the installation of D-Ala post-translationally in a critical position in the hormones, glucagon-like peptides (GLP) 1 and 2. We also offer insight into how precursor peptide design can modulate the modification pattern achieved.


Subject(s)
Escherichia coli , Glucagon-Like Peptide 1 , Glucagon-Like Peptide 2 , Escherichia coli/enzymology , Glucagon-Like Peptide 1/chemistry , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 2/chemistry , Glucagon-Like Peptide 2/metabolism , Protein Processing, Post-Translational , Amino Acid Sequence
3.
J Clin Med ; 12(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37763048

ABSTRACT

Background and aim: The presence of mechanical dyssynchrony on echocardiography is associated with reverse remodelling and decreased mortality after cardiac resynchronization therapy (CRT). Contrarily, myocardial scar reduces the effect of CRT. This study investigated how well a combined assessment of different markers of mechanical dyssynchrony and scarring identifies CRT responders. Methods: In a prospective multicentre study of 170 CRT recipients, septal flash (SF), apical rocking (ApRock), systolic stretch index (SSI), and lateral-to-septal (LW-S) work differences were assessed using echocardiography. Myocardial scarring was quantified using cardiac magnetic resonance imaging (CMR) or excluded based on a coronary angiogram and clinical history. The primary endpoint was a CRT response, defined as a ≥15% reduction in LV end-systolic volume 12 months after implantation. The secondary endpoint was time-to-death. Results: The combined assessment of mechanical dyssynchrony and septal scarring showed AUCs ranging between 0.81 (95%CI: 0.74-0.88) and 0.86 (95%CI: 0.79-0.91) for predicting a CRT response, without significant differences between the markers, but significantly higher than mechanical dyssynchrony alone. QRS morphology, QRS duration, and LV ejection fraction were not superior in their prediction. Predictive power was similar in the subgroups of patients with ischemic cardiomyopathy. The combined assessments significantly predicted all-cause mortality at 44 ± 13 months after CRT with a hazard ratio ranging from 0.28 (95%CI: 0.12-0.67) to 0.20 (95%CI: 0.08-0.49). Conclusions: The combined assessment of mechanical dyssynchrony and septal scarring identified CRT responders with high predictive power. Both visual and quantitative markers were highly feasible and demonstrated similar results. This work demonstrates the value of imaging LV mechanics and scarring in CRT candidates, which can already be achieved in a clinical routine.

5.
RSC Chem Biol ; 3(10): 1216-1229, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36320884

ABSTRACT

Covalently acting compounds experience a strong interest within chemical biology both as molecular probes in studies of fundamental biological mechanisms and/or as novel drug candidates. In this context, the identification of new classes of reactive groups is particularly important as these can expose novel reactivity modes and, consequently, expand the ligandable proteome. Here, we investigated the electrophilic reactivity of the 3-acyl-5-hydroxy-1,5-dihydro-2H-pyrrole-2-one (AHPO) scaffold, a heterocyclic motif that is e.g. present in various bioactive natural products. Our investigations were focused on the compound MT-21 - a simplified structural analogue of the natural product epolactaene - which is known to have both neurotrophic activity and ability to trigger apoptotic cell death. We found that the central N-acyl hemiaminal group of MT-21 can function as an electrophilic centre enabling divergent reactivity with both amine- and thiol-based nucleophiles, which furthermore translated to reactivity with proteins in both cell lysates and live cells. We found that in live cells MT-21 strongly engaged the lipid transport protein fatty acid-binding protein 5 (FABP5) by direct binding to a cysteine residue in the bottom of the ligand binding pocket. Through preparation of a series of MT-21 derivatives, we probed the specificity of this interaction which was found to be strongly dependent on subtle structural changes. Our study suggests that MT-21 may be employed as a tool compound in future studies of the biology of FABP5, which remains incompletely understood. Furthermore, our study has also made clear that other natural products containing the AHPO-motif may likewise possess covalent reactivity and that this property may underlie their biological activity.

6.
Eur Heart J Cardiovasc Imaging ; 23(10): 1373-1382, 2022 09 10.
Article in English | MEDLINE | ID: mdl-34432006

ABSTRACT

AIMS: The left atrium (LA) has a pivotal role in cardiac performance and LA deformation is a well-known prognostic predictor in several clinical conditions including heart failure with reduced ejection fraction. The aim of this study is to investigate the effect of cardiac resynchronization therapy (CRT) on both LA morphology and function and to assess the impact of LA reservoir strain (LARS) on left ventricular (LV) systolic and diastolic remodelling after CRT. METHODS AND RESULTS: Two hundred and twenty-one CRT-candidates were prospectively included in the study in four tertiary centres and underwent echocardiography before CRT-implantation and at 6-month follow-up (FU). CRT-response was defined by a 15% reduction in LV end-systolic volume. LV systolic and diastolic remodelling were defined as the percent reduction in LV end-systolic and end-diastolic volume at FU. Indexed LA volume (LAVI) and LV-global longitudinal (GLS) strain were the main parameters correlated with LARS, with LV-GLS being the strongest determinant of LARS (r = -0.59, P < 0.0001). CRT induced a significant improvement in LAVI and LARS in responders (both P < 0.0001). LARS was an independent predictor of both LV systolic and diastolic remodelling at follow-up (r = -0.14, P = 0.049 and r = -0.17, P = 0.002, respectively). CONCLUSION: CRT induces a significant improvement in LAVI and LARS in responders. In CRT candidates, the evaluation of LARS before CRT delivery is an independent predictor of LV systolic and diastolic remodelling at FU.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Ventricular Dysfunction, Left , Cardiac Resynchronization Therapy/methods , Diastole , Echocardiography/methods , Heart Atria/diagnostic imaging , Heart Failure/diagnostic imaging , Heart Failure/therapy , Heart Murmurs , Heart Ventricles/diagnostic imaging , Humans , Treatment Outcome , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/therapy
7.
JACC Cardiovasc Imaging ; 14(11): 2059-2069, 2021 11.
Article in English | MEDLINE | ID: mdl-34147454

ABSTRACT

OBJECTIVES: This study sought to investigate if contractile asymmetry between septum and left ventricular (LV) lateral wall drives heart failure development in patients with left bundle branch block (LBBB) and whether the presence of lateral wall dysfunction affects potential for recovery of LV function with cardiac resynchronization therapy (CRT). BACKGROUND: LBBB may induce or aggravate heart failure. Understanding the underlying mechanisms is important to optimize timing of CRT. METHODS: In 76 nonischemic patients with LBBB and 11 controls, we measured strain using speckle-tracking echocardiography and regional work using pressure-strain analysis. Patients with LBBB were stratified according to LV ejection fraction (EF) ≥50% (EFpreserved), 36% to 49% (EFmid), and ≤35% (EFlow). Sixty-four patients underwent CRT and were re-examined after 6 months. RESULTS: Septal work was successively reduced from controls, through EFpreserved, EFmid, and EFlow (all p < 0.005), and showed a strong correlation to left ventricular ejection fraction (LVEF; r = 0.84; p < 0.005). In contrast, LV lateral wall work was numerically increased in EFpreserved and EFmid versus controls, and did not significantly correlate with LVEF in these groups. In EFlow, however, LV lateral wall work was substantially reduced (p < 0.005). There was a moderate overall correlation between LV lateral wall work and LVEF (r = 0.58; p < 0.005). In CRT recipients, LVEF was normalized (≥50%) in 54% of patients with preserved LV lateral wall work, but only in 13% of patients with reduced LV lateral wall work (p < 0.005). CONCLUSIONS: In early stages, LBBB-induced heart failure is associated with impaired septal function but preserved lateral wall function. The advent of LV lateral wall dysfunction may be an optimal time-point for CRT.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Bundle-Branch Block/complications , Bundle-Branch Block/diagnostic imaging , Bundle-Branch Block/therapy , Heart Failure/complications , Heart Failure/diagnostic imaging , Heart Failure/therapy , Humans , Predictive Value of Tests , Stroke Volume , Treatment Outcome , Ventricular Function, Left
8.
J Am Soc Echocardiogr ; 34(5): 494-502, 2021 05.
Article in English | MEDLINE | ID: mdl-33422667

ABSTRACT

BACKGROUND: Despite all having systolic heart failure and broad QRS intervals, patients screened for cardiac resynchronization therapy (CRT) are highly heterogeneous, and it remains extremely challenging to predict the impact of CRT devices on left ventricular function and outcomes. The aim of this study was to evaluate the relative impact of clinical, electrocardiographic, and echocardiographic data on the left ventricular remodeling and prognosis of CRT candidates by the application of machine learning approaches. METHODS: One hundred ninety-three patients with systolic heart failure receiving CRT according to current recommendations were prospectively included in this multicenter study. A combination of the Boruta algorithm and random forest methods was used to identify features predicting both CRT volumetric response and prognosis. Model performance was tested using the area under the receiver operating characteristic curve. The k-medoid method was also applied to identify clusters of phenotypically similar patients. RESULTS: From 28 clinical, electrocardiographic, and echocardiographic variables, 16 features were predictive of CRT response, and 11 features were predictive of prognosis. Among the predictors of CRT response, eight variables (50%) pertained to right ventricular size or function. Tricuspid annular plane systolic excursion was the main feature associated with prognosis. The selected features were associated with particularly good prediction of both CRT response (area under the curve, 0.81; 95% CI, 0.74-0.87) and outcomes (area under the curve, 0.84; 95% CI, 0.75-0.93). An unsupervised machine learning approach allowed the identification of two phenogroups of patients who differed significantly in clinical variables and parameters of biventricular size and right ventricular function. The two phenogroups had significantly different prognosis (hazard ratio, 4.70; 95% CI, 2.1-10.0; P < .0001; log-rank P < .0001). CONCLUSIONS: Machine learning can reliably identify clinical and echocardiographic features associated with CRT response and prognosis. The evaluation of both right ventricular size and functional parameters has pivotal importance for the risk stratification of CRT candidates and should be systematically performed in patients undergoing CRT.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure, Systolic , Heart Failure , Heart Failure/diagnostic imaging , Heart Failure/therapy , Heart Ventricles , Humans , Machine Learning , Stroke Volume , Treatment Outcome
10.
Eur Heart J ; 41(39): 3813-3823, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32918449

ABSTRACT

AIMS: Left ventricular (LV) failure in left bundle branch block is caused by loss of septal function and compensatory hyperfunction of the LV lateral wall (LW) which stimulates adverse remodelling. This study investigates if septal and LW function measured as myocardial work, alone and combined with assessment of septal viability, identifies responders to cardiac resynchronization therapy (CRT). METHODS AND RESULTS: In a prospective multicentre study of 200 CRT recipients, myocardial work was measured by pressure-strain analysis and viability by cardiac magnetic resonance (CMR) imaging (n = 125). CRT response was defined as ≥15% reduction in LV end-systolic volume after 6 months. Before CRT, septal work was markedly lower than LW work (P < 0.0001), and the difference was largest in CRT responders (P < 0.001). Work difference between septum and LW predicted CRT response with area under the curve (AUC) 0.77 (95% CI: 0.70-0.84) and was feasible in 98% of patients. In patients undergoing CMR, combining work difference and septal viability significantly increased AUC to 0.88 (95% CI: 0.81-0.95). This was superior to the predictive power of QRS morphology, QRS duration and the echocardiographic parameters septal flash, apical rocking, and systolic stretch index. Accuracy was similar for the subgroup of patients with QRS 120-150 ms as for the entire study group. Both work difference alone and work difference combined with septal viability predicted long-term survival without heart transplantation with hazard ratio 0.36 (95% CI: 0.18-0.74) and 0.21 (95% CI: 0.072-0.61), respectively. CONCLUSION: Assessment of myocardial work and septal viability identified CRT responders with high accuracy.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Echocardiography , Heart Failure/diagnostic imaging , Heart Failure/therapy , Humans , Magnetic Resonance Spectroscopy , Prospective Studies , Treatment Outcome , Ventricular Function, Left
11.
Structure ; 28(5): 528-539.e9, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32220302

ABSTRACT

Phenomycin is a bacterial mini-protein of 89 amino acids discovered more than 50 years ago with toxicity in the nanomolar regime toward mammalian cells. The protein inhibits the function of the eukaryotic ribosome in cell-free systems and appears to target translation initiation. Several fundamental questions concerning the cellular activity of phenomycin, however, have remained unanswered. In this paper, we have used morphological profiling to show that direct inhibition of translation underlies the toxicity of phenomycin in cells. We have performed studies of the cellular uptake mechanism of phenomycin, showing that endosomal escape is the toxicity-limiting step, and we have solved a solution phase high-resolution structure of the protein using NMR spectroscopy. Through bioinformatic as well as functional comparisons between phenomycin and two homologs, we have identified a peptide segment, which constitutes one of two loops in the structure that is critical for the toxicity of phenomycin.


Subject(s)
Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/toxicity , Animals , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Bacteriocins/pharmacokinetics , Bacteriocins/toxicity , Cell Line , Endosomes/drug effects , Endosomes/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , MCF-7 Cells , Mice , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Synthesis Inhibitors/chemistry , Protein Synthesis Inhibitors/toxicity , Structure-Activity Relationship
12.
Eur Heart J Cardiovasc Imaging ; 21(6): 619-628, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32031587

ABSTRACT

AIMS: Investigating the acute impact of cardiac resynchronization therapy (CRT) on regional myocardial work distribution in the left ventricle (LV) and to which extent it is related to long-term reverse remodelling. METHODS AND RESULTS: One hundred and thirty heart failure patients, referred for CRT implantation, were recruited in our prospective multicentre study. Regional myocardial work was calculated from non-invasive segmental stress-strain loop area before and immediately after CRT. The magnitude of volumetric reverse remodelling was determined from the change in LV end-systolic volume, 11 ± 2 months after implantation. CRT caused acute redistribution of myocardial work across the LV, with an increase in septal work, and decrease in LV lateral wall work (all P < 0.05). Amongst all LV walls, the acute change in work in the septum and lateral wall of the four-chamber view correlated best and significantly with volumetric reverse remodelling (r = 0.62, P < 0.0001), with largest change seen in patients with most volumetric reverse remodelling. In multivariate linear regression analysis, including conventional parameters, such as pre-implant QRS morphology and duration, LV ejection fraction, ischaemic origin of cardiomyopathy, and the redistribution of work across the septal and lateral walls, the latter appeared as the strongest determinant of volumetric reverse remodelling after CRT (model R2 = 0.414, P < 0.0001). CONCLUSION: The acute redistribution of regional myocardial work between the septal and lateral wall of the LV is an important determinant of reverse remodelling after CRT implantation. Our data suggest that the treatment of the loading imbalance should, therefore, be the main aim of CRT.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Ventricular Dysfunction, Left , Echocardiography , Heart Failure/diagnostic imaging , Heart Failure/therapy , Humans , Prospective Studies , Treatment Outcome , Ventricular Dysfunction, Left/therapy , Ventricular Function, Left , Ventricular Remodeling
13.
J Appl Physiol (1985) ; 128(4): 729-738, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31999529

ABSTRACT

We investigated whether tachycardia in left bundle branch block (LBBB) decreases left ventricular (LV) diastolic distensibility and increases diastolic pressures due to incomplete relaxation, and if cardiac resynchronization therapy (CRT) modifies this response. Thirteen canines were studied at baseline heart rate (120 beats/min) and atrial paced tachycardia (180 beats/min) before and after induction of LBBB and during CRT. LV and left atrial pressures (LAP) were measured by micromanometers and dimensions by sonomicrometry. The time constant τ of exponential pressure decay and degree of incomplete relaxation at mitral valve opening (MVO) and end diastole (ED) based on extrapolation of the exponential decay were assessed. Changes in LV diastolic distensibility were investigated using the LV transmural pressure-volume (PV) relation. LBBB caused prolongation of τ (P < 0.03) and increased the degree of incomplete relaxation during tachycardia at MVO (P < 0.001) and ED (P = 0.08) compared with normal electrical activation. This was associated with decreased diastolic distensibility seen as upward shift of the PV relation at MVO by 18.4 ± 7.0 versus 12.0 ± 5.0 mmHg, at ED by 9.8 ± 2.3 versus 4.7 ± 2.3 mmHg, and increased mean LAP to 11.4 ± 2.7 versus 8.5 ± 2.6 mmHg, all P < 0.006. CRT shifted the LV diastolic PV relation downwards during tachycardia, reducing LAP and LV diastolic pressures (P < 0.03). Tachycardia in LBBB reduced LV diastolic distensibility and increased LV diastolic pressures due to incomplete relaxation, whereas CRT normalized these effects. Clinical studies are needed to determine whether a similar mechanism contributes to dyspnea and exercise intolerance in LBBB and if effects of CRT are heart rate dependent.NEW & NOTEWORTHY Compared with normal electrical conduction, tachycardia in left bundle branch block resulted in incomplete relaxation during filling, particularly of the late activated left ventricular lateral wall. This further resulted in reduced left ventricular diastolic distensibility and elevated diastolic pressures and thus amplified the benefits of cardiac resynchronization therapy in this setting.


Subject(s)
Bundle-Branch Block , Cardiac Resynchronization Therapy , Animals , Blood Pressure , Bundle-Branch Block/therapy , Diastole , Dogs , Electrocardiography , Tachycardia , Ventricular Function, Left
14.
JACC Cardiovasc Imaging ; 12(12): 2402-2413, 2019 12.
Article in English | MEDLINE | ID: mdl-30772230

ABSTRACT

OBJECTIVES: This study sought to investigate how regional left ventricular (LV) function modifies septal motion in left bundle branch block (LBBB). BACKGROUND: In LBBB, the interventricular septum often has marked pre-ejection shortening, followed by immediate relengthening (rebound stretch). This motion, often referred to as septal flash, is associated with positive response to cardiac resynchronization therapy (CRT). METHODS: In 10 anesthetized dogs, we induced LBBB by radiofrequency ablation and occluded the circumflex (CX) (n = 10) and left anterior descending (LAD) (n = 6) coronary arteries, respectively. Myocardial dimensions were measured by sonomicrometry and myocardial work by pressure-segment length analysis. In 40 heart failure patients with LBBB, including 20 with post-infarct scar and 20 with nonischemic cardiomyopathy, myocardial strain was measured by speckle-tracking echocardiography and myocardial work by pressure-strain analysis. Scar was assessed by cardiac magnetic resonance imaging with late gadolinium enhancement. RESULTS: During LBBB, each animal showed typical septal flash with pre-ejection shortening and rebound stretch, followed by reduced septal systolic shortening (p < 0.01). CX occlusion caused LV lateral wall dysfunction and abolished septal flash due to loss of rebound stretch (p < 0.0001). Furthermore, CX occlusion restored septal systolic shortening to a similar level as before induction of LBBB and substantially improved septal work (p < 0.001). LAD occlusion, however, accentuated septal flash by increasing rebound stretch (p < 0.05). Consistent with the experimental findings, septal flash was absent in patients with LV lateral wall scar due to lack of rebound stretch (p < 0.001), and septal systolic shortening and septal work far exceeded values in nonischemic cardiomyopathy (p < 0.0001). Septal flash was present in most patients with anteroseptal scar. CONCLUSIONS: LV lateral wall dysfunction and scar abolished septal flash and markedly improved septal function in LBBB. Therefore, function and scar in the LV lateral wall should be taken into account when septal motion is used to evaluate dyssynchrony.


Subject(s)
Bundle-Branch Block/physiopathology , Cicatrix/physiopathology , Heart Rate , Heart Septum/physiopathology , Myocardial Infarction/physiopathology , Myocardium/pathology , Ventricular Function, Left , Ventricular Remodeling , Aged , Animals , Bundle-Branch Block/complications , Cicatrix/diagnostic imaging , Cicatrix/etiology , Cicatrix/pathology , Disease Models, Animal , Dogs , Echocardiography , Female , Heart Septum/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Myocardial Infarction/complications , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Time Factors
15.
JACC Cardiovasc Imaging ; 12(6): 967-977, 2019 06.
Article in English | MEDLINE | ID: mdl-29361486

ABSTRACT

OBJECTIVES: This study sought to investigate the hypothesis that patients with left bundle branch block (LBBB) are hypersensitive to elevated afterload. BACKGROUND: Epidemiological data suggest that LBBB can provoke heart failure in patients with hypertension. METHODS: In 11 asymptomatic patients with isolated LBBB and 11 age-matched control subjects, left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) were measured by echocardiography. Systolic arterial pressure was increased by combining pneumatic extremity constrictors and handgrip exercise. To obtain more insight into mechanisms of afterload response, 8 anesthetized dogs with left ventricular (LV) micromanometer and dimension crystals were studied during acutely induced LBBB and aortic constriction. Regional myocardial work was assessed by LV pressure-dimension analysis. RESULTS: Consistent with normal afterload dependency, elevation of systolic arterial pressure by 38 ± 12 mm Hg moderately reduced LVEF from 60 ± 4% to 54 ± 6% (p < 0.01) in control subjects. In LBBB patients, however, a similar blood pressure increase caused substantially larger reduction in LVEF (p < 0.01), from 56 ± 6% to 42 ± 7% (p < 0.01). There were similar findings for GLS. In the dog model, aortic constriction abolished septal shortening (p < 0.02), and septal work decreased to negative values (p < 0.01). Therefore, during elevated systolic pressure, the septum made no contribution to global LV work, as indicated by net negative work, and instead absorbed energy from work done by the LV lateral wall. CONCLUSIONS: Moderate elevation of arterial pressure caused marked reductions in LVEF and GLS in patients with LBBB. This reflects a cardiodepressive effect of elevated afterload in the dyssynchronous ventricle and was attributed to loss of septal function.


Subject(s)
Arterial Pressure , Bundle-Branch Block/physiopathology , Heart Failure/physiopathology , Hypertension/physiopathology , Stroke Volume , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left , Aged , Animals , Bundle-Branch Block/complications , Bundle-Branch Block/diagnostic imaging , Case-Control Studies , Disease Models, Animal , Dogs , Echocardiography, Doppler , Female , Heart Failure/diagnostic imaging , Heart Failure/etiology , Humans , Hypertension/complications , Hypertension/diagnosis , Male , Middle Aged , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology
SELECTION OF CITATIONS
SEARCH DETAIL