Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS Pathog ; 16(10): e1009009, 2020 10.
Article in English | MEDLINE | ID: mdl-33104760

ABSTRACT

A key difference that distinguishes viral infections from protein immunizations is the recognition of viral nucleic acids by cytosolic pattern recognition receptors (PRRs). Insights into the functions of cytosolic PRRs such as the RNA-sensing Rig-I-like receptors (RLRs) in the instruction of adaptive immunity are therefore critical to understand protective immunity to infections. West Nile virus (WNV) infection of mice deficent of RLR-signaling adaptor MAVS results in a defective adaptive immune response. While this finding suggests a role for RLRs in the instruction of adaptive immunity to WNV, it is difficult to interpret due to the high WNV viremia, associated exessive antigen loads, and pathology in the absence of a MAVS-dependent innate immune response. To overcome these limitations, we have infected MAVS-deficient (MAVSKO) mice with a single-round-of-infection mutant of West Nile virus. We show that MAVSKO mice failed to produce an effective neutralizing antibody response to WNV despite normal antibody titers against the viral WNV-E protein. This defect occurred independently of antigen loads or overt pathology. The specificity of the antibody response in infected MAVSKO mice remained unchanged and was still dominated by antibodies that bound the neutralizing lateral ridge (LR) epitope in the DIII domain of WNV-E. Instead, MAVSKO mice produced IgM antibodies, the dominant isotype controlling primary WNV infection, with lower affinity for the DIII domain. Our findings suggest that RLR-dependent signals are important for the quality of the humoral immune response to WNV.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Receptors, Pattern Recognition/immunology , Adaptive Immunity/immunology , Adaptor Proteins, Signal Transducing/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation , DEAD Box Protein 58/immunology , DEAD Box Protein 58/metabolism , Female , Immunity, Humoral , Immunity, Innate/immunology , Immunoglobulin M , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Pattern Recognition/metabolism , Signal Transduction/immunology , West Nile Fever/immunology , West Nile Fever/virology , West Nile virus/pathogenicity
2.
J Neurosci ; 33(30): 12300-5, 2013 Jul 24.
Article in English | MEDLINE | ID: mdl-23884936

ABSTRACT

The NMDA receptor is an important component of spatial working and reference memory. The receptor is a heterotetramer composed of a family of related subunits. The GluN2B subunit of the NMDA receptor appears to be essential for some forms of memory and is particularly vulnerable to change with age in both the hippocampus and cerebral cortex. GluN2B expression is particularly reduced in frontal cortex synaptic membranes. The current study examined the relationship between spatial cognition and protein-protein interactions of GluN2B-containing NMDA receptors in frontal cortex crude synaptosome from 3, 12, and 26-month-old C57BL/6 mice. Aged mice showed a significant decline in spatial reference memory and reversal learning from both young and middle-aged mice. Coimmunoprecipitation of GluN2B subunits revealed an age-related increase in the ratio of both postsynaptic density-95 (PSD-95) and the GluN2A subunit to the GluN2B subunit. Higher ratios of PSD-95/GluN2B and GAIP-interacting protein C-terminus (GIPC)/GluN2B were associated with poorer learning index scores across all ages. There was a significant correlation between GIPC/GluN2B and PSD-95/GluN2B ratios, but PSD-95/GluN2B and GluN2A/GluN2B ratios did not show a relationship. These results suggest that there were more triheteromeric (GluN2B/GluN2A/GluN1) NMDA receptors in older mice than in young adults, but this did not appear to impact spatial reference memory. Instead, an increased association of GluN2B-containing NMDA receptors with synaptic scaffolding proteins in aged animals may have contributed to the age-related memory declines.


Subject(s)
Aging/physiology , Carrier Proteins/metabolism , Guanylate Kinases/metabolism , Membrane Proteins/metabolism , Memory Disorders/physiopathology , Neuropeptides/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Adaptor Proteins, Signal Transducing , Animals , Disks Large Homolog 4 Protein , Frontal Lobe/metabolism , Frontal Lobe/physiopathology , Hippocampus/metabolism , Hippocampus/physiopathology , Male , Maze Learning/physiology , Memory/physiology , Memory Disorders/metabolism , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Reversal Learning/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...