Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Sci Total Environ ; 896: 165298, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37406702

ABSTRACT

Reshaping the scale of planning for hydropower development, from reaches to basin-scales, has been recommended as a more effective way to ameliorate the environmental impacts of hydropower. One approach is identifying mutually exclusive areas where development is precluded for conservation purposes and areas of low conservation value that present fewer barriers to development. This strategy, however, is less adoptable in developed countries where hydropower is already widespread and large-scale construction of new dams is unlikely. To broaden the adoption of basin-scale planning, alternative approaches and planning tools are needed for identifying mutually beneficial opportunities for simultaneous increases in hydropower capacity while improving environmental conditions. In this study, we present the Basin Scale Opportunity Assessment as a methodology to improve environmental conditions through either direct (on-site) or indirect (off-site) mitigation. We assess whether direct or indirect mitigation activities lead to optimal results in terms of added hydropower, environmental improvement, and monetary cost at a basin scale. We present two case studies for the Connecticut River and Roanoke River Basins, USA. Significant opportunities for expanding hydropower generating capacity are numerous in both basins. Results suggest that total hydropower capacity could be increased 4 to 7 % in the Roanoke and Connecticut Basins, respectively, without new dam construction and with net improvements in environmental conditions. We found that environmentally and economically optimal win-win strategies for increasing hydropower capacity and improving environmental conditions included improving environmental conditions in rivers downstream of existing dams. Off-site mitigation opportunities, such as dam removal and wetland mitigation, were identified as optimum solutions for achieving net environmental improvements only when they were associated with new hydropower construction. Our results demonstrate that opportunities to increase hydropower capacity and improve environmental conditions are expanded by viewing cumulative benefits at basin scales; however, increasing regulatory flexibility may be required to realize these opportunities.

2.
Viral Immunol ; 32(3): 131-143, 2019 04.
Article in English | MEDLINE | ID: mdl-30822217

ABSTRACT

Influenza A viruses (IAVs) have multiple mechanisms for altering the host immune response to aid in virus survival and propagation. While both type I and II interferons (IFNs) have been associated with increased bacterial superinfection (BSI) susceptibility, we found that in some cases type I IFNs can be beneficial for BSI outcome. Specifically, we have shown that antagonism of the type I IFN response during infection by some IAVs can lead to the development of deadly BSI. The nonstructural protein 1 (NS1) from IAV is well known for manipulating host type I IFN responses, but the viral proteins mediating BSI severity remain unknown. In this study, we demonstrate that the PDZ-binding motif (PDZ-bm) of the NS1 C-terminal region from mouse-adapted A/Puerto Rico/8/34-H1N1 (PR8) IAV dictates BSI susceptibility through regulation of IFN-α/ß production. Deletion of the NS1 PDZ-bm from PR8 IAV (PR8-TRUNC) resulted in 100% survival and decreased bacterial burden in superinfected mice compared with 0% survival in mice superinfected after PR8 infection. This reduction in BSI susceptibility after infection with PR8-TRUNC was due to the presence of IFN-ß, as protection from BSI was lost in Ifn-ß-/- mice, resembling BSI during PR8 infection. PDZ-bm in PR8-infected mice inhibited the production of IFN-ß posttranscriptionally, and both delayed and reduced expression of the tunable interferon-stimulated genes. Finally, a similar lack of BSI susceptibility, due to the presence of IFN-ß on day 7 post-IAV infection, was also observed after infection of mice with A/TX98-H3N2 virus that naturally lacks a PDZ-bm in NS1, indicating that this mechanism of BSI regulation by NS1 PDZ-bm may not be restricted to PR8 IAV. These results demonstrate that the NS1 C-terminal PDZ-bm, like the one present in PR8 IAV, is involved in controlling susceptibility to BSI through the regulation of IFN-ß, providing new mechanisms for NS1-mediated manipulation of host immunity and BSI severity.


Subject(s)
Orthomyxoviridae Infections/veterinary , PDZ Domains/genetics , Superinfection/microbiology , Viral Nonstructural Proteins/genetics , Animals , Dogs , Gene Expression Regulation , HEK293 Cells , Host-Pathogen Interactions , Humans , Immunity, Innate , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza, Human/immunology , Interferon Type I/genetics , Interferon Type I/immunology , Interferon-beta/genetics , Interferon-beta/immunology , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/virology , Virus Replication
3.
Front Immunol ; 9: 2589, 2018.
Article in English | MEDLINE | ID: mdl-30473701

ABSTRACT

Influenza virus infections particularly when followed by bacterial superinfections (BSI) result in significant morbidities and mortalities especially during influenza pandemics. Type I interferons (IFNs) regulate both anti-influenza immunity and host susceptibility to subsequent BSIs. These type I IFNs consisting of, among others, 14 IFN-α's and a single IFN-ß, are recognized by and signal through the heterodimeric type I IFN receptor (IFNAR) comprised of IFNAR1 and IFNAR2. However, the individual receptor subunits can bind IFN-ß or IFN-α's independently of each other and induce distinct signaling. The role of type I IFN signaling in regulating host susceptibility to both viral infections and BSI has been only examined with respect to IFNAR1 deficiency. Here, we demonstrate that despite some redundancies, IFNAR1 and IFNAR2 have distinct roles in regulating both anti-influenza A virus (IAV) immunity and in shaping host susceptibility to subsequent BSI caused by S. aureus. We found IFNAR2 to be critical for anti-viral immunity. In contrast to Ifnar1-/- mice, IAV-infected Ifnar2-/- mice displayed both increased and accelerated morbidity and mortality compared to WT mice. Furthermore, unlike IFNAR1, IFNAR2 was sufficient to generate protection from lethal IAV infection when stimulated with IFN-ß. With regards to BSI, unlike what we found previously in Ifnar1-/- mice, Ifnar2-/- mice were not susceptible to BSI induced on day 3 post-IAV, even though absence of IFNAR2 resulted in increased viral burden and an increased inflammatory environment. The Ifnar2-/- mice similar to what we previously found in Ifnar1-/- mice were less susceptible than WT mice to BSI induced on day 7 post-IAV, indicating that signaling through a complete receptor increases BSI susceptibility late during clinical IAV infection. Thus, our results support a role for IFNAR2 in induction of anti-IAV immune responses that are involved in altering host susceptibility to BSI and are essential for decreasing the morbidity and mortality associated with IAV infection. These results begin to elucidate some of the mechanisms involved in how the individual IFNAR subunits shape the anti-viral immune response. Moreover, our results highlight the importance of examining the contributions of entire receptors, as individual subunits can induce distinct outcomes as shown here.


Subject(s)
Orthomyxoviridae Infections/immunology , Receptor, Interferon alpha-beta/immunology , Staphylococcal Infections/immunology , Superinfection/immunology , Animals , Disease Susceptibility/immunology , Female , Influenza A virus/immunology , Male , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/microbiology , Staphylococcus aureus/immunology , Superinfection/microbiology , Vaccination/methods
4.
mBio ; 8(6)2017 11 14.
Article in English | MEDLINE | ID: mdl-29138299

ABSTRACT

Although viruses and viral capsids induce rapid immune responses, little is known about viral pathogen-associated molecular patterns (PAMPs) that are exhibited on their surface. Here, we demonstrate that the repeating protein subunit pattern common to most virus capsids is a molecular pattern that induces a Toll-like-receptor-2 (TLR2)-dependent antiviral immune response. This early antiviral immune response regulates the clearance of subsequent bacterial superinfections, which are a primary cause of morbidities associated with influenza virus infections. Utilizing this altered susceptibility to subsequent bacterial challenge as an outcome, we determined that multiple unrelated, empty, and replication-deficient capsids initiated early TLR2-dependent immune responses, similar to intact influenza virus or murine pneumovirus. These TLR2-mediated responses driven by the capsid were not dependent upon the capsid's shape, size, origin, or amino acid sequence. However, they were dependent upon the multisubunit arrangement of the capsid proteins, because unlike intact capsids, individual capsid subunits did not enhance bacterial clearance. Further, we demonstrated that even a linear microfilament protein built from repeating protein subunits (F-actin), but not its monomer (G-actin), induced similar kinetics of subsequent bacterial clearance as did virus capsid. However, although capsids and F-actin induced similar bacterial clearance, in macrophages they required distinct TLR2 heterodimers for this response (TLR2/6 or TLR2/1, respectively) and different phagocyte populations were involved in the execution of these responses in vivo Our results demonstrate that TLR2 responds to invading viral particles that are composed of repeating protein subunits, indicating that this common architecture of virus capsids is a previously unrecognized molecular pattern.IMPORTANCE Rapid and precise pathogen identification is critical for the initiation of pathogen-specific immune responses and pathogen clearance. Bacteria and fungi express common molecular patterns on their exteriors that are recognized by cell surface-expressed host pattern recognition receptors (PRRs) prior to infection. In contrast, viral molecular patterns are primarily nucleic acids, which are recognized after virus internalization. We found that an initial antiviral immune response is induced by the repeating subunit pattern of virus exteriors (capsids), and thus, induction of this response is independent of viral infection. This early response to viral capsids required the cell surface-expressed PRR TLR2 and allowed for improved clearance of subsequent bacterial infection that commonly complicates respiratory viral infections. Since the repeating protein subunit pattern is conserved across viral capsids, this suggests that it is not easy for a virus to change without altering fitness. Targeting this vulnerability could lead to development of a universal antiviral vaccine.


Subject(s)
Bacteria/immunology , Capsid Proteins/immunology , Capsid/immunology , Immunity, Innate , Pathogen-Associated Molecular Pattern Molecules , Toll-Like Receptor 2/metabolism , Viruses/immunology , Animals , Macrophages/immunology , Mice, Inbred C57BL , Mice, Knockout , Virus Diseases/immunology
5.
mBio ; 7(3)2016 05 03.
Article in English | MEDLINE | ID: mdl-27143388

ABSTRACT

UNLABELLED: Bacterial superinfections are a primary cause of death during influenza pandemics and epidemics. Type I interferon (IFN) signaling contributes to increased susceptibility of mice to bacterial superinfection around day 7 post-influenza A virus (IAV) infection. Here we demonstrate that the reduced susceptibility to methicillin-resistant Staphylococcus aureus (MRSA) at day 3 post-IAV infection, which we previously reported was due to interleukin-13 (IL-13)/IFN-γ responses, is also dependent on type I IFN signaling and its subsequent requirement for protective IL-13 production. We found, through utilization of blocking antibodies, that reduced susceptibility to MRSA at day 3 post-IAV infection was IFN-ß dependent, whereas the increased susceptibility at day 7 was IFN-α dependent. IFN-ß signaling early in IAV infection was required for MRSA clearance, whereas IFN-α signaling late in infection was not, though it did mediate increased susceptibility to MRSA at that time. Type I IFN receptor (IFNAR) signaling in CD11c(+) and Ly6G(+) cells was required for the observed reduced susceptibility at day 3 post-IAV infection. Depletion of Ly6G(+) cells in mice in which IFNAR signaling was either blocked or deleted indicated that Ly6G(+) cells were responsible for the IFNAR signaling-dependent susceptibility to MRSA superinfection at day 7 post-IAV infection. Thus, during IAV infection, the temporal differences in type I IFN signaling increased bactericidal activity of both CD11c(+) and Ly6G(+) cells at day 3 and reduced effector function of Ly6G(+) cells at day 7. The temporal differential outcomes induced by IFN-ß (day 3) and IFN-α (day 7) signaling through the same IFNAR resulted in differential susceptibility to MRSA at 3 and 7 days post-IAV infection. IMPORTANCE: Approximately 114,000 hospitalizations and 40,000 annual deaths in the United States are associated with influenza A virus (IAV) infections. Frequently, these deaths are due to community-acquired Gram-positive bacterial species, many of which show increasing resistance to antibiotic therapy. Severe complications, including parapneumonic empyema and necrotizing pneumonia, can arise, depending on virulence factors expressed by either the virus or bacteria. Unfortunately, we are unable to control the expression of these virulence factors, making host responses a logical target for therapeutic interventions. Moreover, interactions between virus, host, and bacteria that exacerbate IAV-related morbidities and mortalities are largely unknown. Here, we show that type I interferon (IFN) expression can modulate susceptibility to methicillin-resistant Staphylococcus aureus (MRSA) infection, with IFN-ß reducing host susceptibility to MRSA infection while IFN-α increases susceptibility. Our data indicate that treatments designed to augment IFN-ß and/or inhibit IFN-α production around day 7 post-IAV infection could reduce susceptibility to deadly superinfections.


Subject(s)
Disease Susceptibility , Influenza, Human/complications , Interferon Type I/metabolism , Leukocytes/immunology , Methicillin-Resistant Staphylococcus aureus/immunology , Staphylococcal Infections/immunology , Superinfection/immunology , Animals , Antigens, Ly/analysis , CD11c Antigen/analysis , Humans , Influenza, Human/immunology , Interleukin-13/metabolism , Leukocytes/chemistry , Mice, Inbred C57BL , Mice, Knockout , Receptor, Interferon alpha-beta/metabolism , Signal Transduction
6.
ACS Nano ; 9(9): 9134-47, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26266824

ABSTRACT

Viruses use spatial control of constituent proteins as a means of manipulating and evading host immune systems. Similarly, precise spatial control of proteins encapsulated or presented on designed nanoparticles has the potential to biomimetically amplify or shield biological interactions. Previously, we have shown the ability to encapsulate a wide range of guest proteins within the virus-like particle (VLP) from Salmonella typhimurium bacteriophage P22, including antigenic proteins from human pathogens such as influenza. Expanding on this robust encapsulation strategy, we have used the trimeric decoration protein (Dec) from bacteriophage L as a means of controlled exterior presentation on the mature P22 VLP, to which it binds with high affinity. Through genetic fusion to the C-terminus of the Dec protein, either the 17 kDa soluble region of murine CD40L or a minimal peptide designed from the binding region of the "self-marker" CD47 was independently presented on the P22 VLP capsid exterior. Both candidates retained function when presented as a Dec-fusion. Binding of the Dec domain to the P22 capsid was minimally changed across designed constructs, as measured by surface plasmon resonance, demonstrating the broad utility of this presentation strategy. Dec-mediated presentation offers a robust, modular means of decorating the exposed exterior of the P22 capsid in order to further orchestrate responses to internally functionalized VLPs within biological systems.


Subject(s)
Bacteriophage P22/chemistry , Capsid Proteins/chemistry , Recombinant Fusion Proteins/genetics , Virion/chemistry , Animals , Bacteriophage P22/genetics , Bacteriophage lambda/chemistry , Bacteriophage lambda/genetics , CD40 Ligand/chemistry , CD40 Ligand/genetics , CD47 Antigen/chemistry , CD47 Antigen/genetics , Capsid Proteins/genetics , Humans , Mice , Peptides/chemistry , Peptides/genetics , Recombinant Fusion Proteins/chemistry , Salmonella typhimurium/virology , Virion/genetics
7.
Eur J Immunol ; 44(11): 3263-72, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25091976

ABSTRACT

Superinfection in mice at day 7 postinfluenza infection exacerbates bacterial pneumonia at least in part via downstream effects of increased IFN-γ signaling. Here we show that up to 3 days postinfluenza infection, mice have reduced susceptibility to superinfection with methicillin-resistant Staphylococcus aureus (MRSA), but that superinfection during that time exacerbated influenza disease. This was due to IL-13 signaling that was advantageous for resolving MRSA infection via inhibition of IFN-γ, but was detrimental to the clearance of influenza virus. However, if superinfection did not occur until the near resolution of influenza infection (day 7), IL-13 signaling was inhibited, at least in part by upregulation of IL-13 decoy receptor (IL-13Rα2), which in turn caused increases in IFN-γ signaling and exacerbation of bacterial infection. Understanding these cytokine sequelae is critical to development of immunotherapies for influenza-MRSA coinfection since perturbations of these sequelae at the wrong time could increase susceptibility to MRSA and/or influenza.


Subject(s)
Interferon-gamma/genetics , Interleukin-13 Receptor alpha2 Subunit/immunology , Interleukin-13/immunology , Methicillin-Resistant Staphylococcus aureus/immunology , Orthomyxoviridae Infections/immunology , Staphylococcal Infections/immunology , Superinfection/immunology , Animals , Bacterial Load , Coinfection , Disease Susceptibility , Interleukin-13/genetics , Interleukin-13/pharmacology , Interleukin-13 Receptor alpha2 Subunit/antagonists & inhibitors , Interleukin-13 Receptor alpha2 Subunit/biosynthesis , Lung/microbiology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Pneumonia, Bacterial/immunology , Recombinant Proteins/pharmacology , Superinfection/microbiology , Viral Load
8.
Eur J Immunol ; 44(2): 397-408, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24222381

ABSTRACT

Recent evidence suggests that an individual's unique history and sequence of exposures to pathogens and antigens may dictate downstream immune responses to disparate antigens. We show that the i.n. delivery of nonreplicative virus-like particles (VLPs), which bear structural but no antigenic similarities to respiratory pathogens, acts to prime the lungs of both C56BL/6 and BALB/c mice, facilitating heightened and accelerated primary immune responses to high-dose influenza challenge, thus providing a nonpathogenic model of innate imprinting. These responses correspond closely to those observed following natural infection with the opportunistic fungus, Pneumocystis murina, and are characterized by accelerated antigen processing by DCs and alveolar macrophages, an enhanced influx of cells to the local tracheobronchial lymph node, and early upregulation of T-cell co-stimulatory/adhesion molecules. CD11c⁺ cells, which have been directly exposed to VLPs or Pneumocystis are necessary in facilitating enhanced clearance of influenza virus, and the repopulation of the lung by Ly-6C⁺ precursors relies on CCR2 expression. Thus, immune imprinting 72 h after VLP-priming, or 2 weeks after Pneumocystis-priming is CCR2-mediated and results from the enhanced antigen processing, maturation, and trafficking abilities of DCs and alveolar macrophages, which cause accelerated influenza-specific primary immune responses and result in superior viral clearance.


Subject(s)
Antigens/immunology , CD11c Antigen/immunology , Immunity, Innate/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae/immunology , Animals , Antigen Presentation/immunology , Antigens, Ly/immunology , Dendritic Cells/immunology , Dendritic Cells/microbiology , Dendritic Cells/virology , Lung/immunology , Lung/microbiology , Lung/virology , Lymph Nodes/immunology , Lymph Nodes/microbiology , Lymph Nodes/virology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/microbiology , Macrophages, Alveolar/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Pneumocystis/immunology , Pneumocystis Infections/immunology , Receptors, CCR2/immunology , T-Lymphocytes/immunology , T-Lymphocytes/microbiology , T-Lymphocytes/virology , Up-Regulation/immunology , Vaccines, Virus-Like Particle/immunology
9.
S D Med ; 66(11): 459, 461, 463-5, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24383262

ABSTRACT

BACKGROUND: The Centers for Disease Control and Prevention (CDC) reports that autism spectrum disorder (ASD) affects one in 88 children in the United States. The American Psychiatric Association's Diagnostic and Statistical Manual, Text Revision (DSM-IV-TR) defines ASD as a pervasive neurodevelopmental disorder characterized by qualitative impairment in communication and social interaction, and restricted, repetitive and stereotyped behavior patterns. The purpose of this study was to determine whether children with autism differ in their response to sensory input relative to typically developing age- and gender-matched peers. METHOD: The Sensory Profile (SP) is a 125-item caregiver questionnaire designed to measure a child's ability to process sensory information and to profile the effect of sensory processing on daily life activity. The results of the SP of 21 participants with autism ages 3 to 9 years were compared with an age- and gender-matched sample of typically developing children. RESULTS: Significant differences were found across all four SP quadrants (Registration, Seeking, Sensitivity, and Avoiding) as well as eight of the nine SP factor scores. This study adds to the evidence indicating that children with autism process and respond to sensory input differently than typically-developing peers. CONCLUSION: The findings from this study support previous research findings that sensory processing differences exist between children with ASD and their typically-developing peers, as measured by the SP.


Subject(s)
Activities of Daily Living , Autistic Disorder/diagnosis , Child Development , Sensation/physiology , Autistic Disorder/epidemiology , Autistic Disorder/physiopathology , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Incidence , Male , Retrospective Studies , Surveys and Questionnaires , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...