Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
2.
J Immunol ; 211(11): 1714-1724, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37782053

ABSTRACT

Epidemiological evidence indicates that exposure to particulate matter is linked to the development of idiopathic pulmonary fibrosis (IPF) and increases the incidence of acute exacerbations of IPF. In addition to accelerating the rate of lung function decline, exposure to fine particulate matter (particulate matter smaller than 2.5 µm [PM2.5]) is a risk factor for increased mortality in subjects with IPF. In this article, we show that exposure to PM2.5 mediates monocyte recruitment and fibrotic progression in mice with established fibrosis. In mice with established fibrosis, bronchoalveolar lavage cells showed monocyte/macrophage heterogeneity after exposure to PM2.5. These cells had a significant inflammatory and anti-inflammatory signature. The mixed heterogeneity of cells contributed to the proinflammatory and anti-inflammatory response. Although monocyte-derived macrophages were recruited to the lung in bleomycin-injured mice treated with PM2.5, recruitment of monocytes expressing Ly6Chi to the lung promoted progression of fibrosis, reduced lung aeration on computed tomography, and impacted lung compliance. Ly6Chi monocytes isolated from PM2.5-exposed fibrotic mice showed enhanced expression of proinflammatory markers compared with fibrotic mice exposed to vehicle. Moreover, IPF bronchoalveolar lavage cells treated ex vivo with PM2.5 showed an exaggerated inflammatory response. Targeting Ly6Chi monocyte recruitment inhibited fibrotic progression in mice. Moreover, the adoptive transfer of Ly6Chi monocytes exacerbated established fibrosis. These observations suggest that enhanced recruitment of Ly6Chi monocytes with a proinflammatory phenotype mediates acute exacerbations of pulmonary fibrosis, and targeting these cells may provide a potential novel therapeutic target to protect against acute exacerbations of IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung , Humans , Mice , Animals , Lung/pathology , Idiopathic Pulmonary Fibrosis/pathology , Fibrosis , Bleomycin/therapeutic use , Particulate Matter/adverse effects , Anti-Inflammatory Agents/therapeutic use
3.
J Biol Chem ; 299(5): 104695, 2023 05.
Article in English | MEDLINE | ID: mdl-37044213

ABSTRACT

Pulmonary fibrosis is a progressive lung disease characterized by macrophage activation. Asbestos-induced expression of nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4 (NOX4) in lung macrophages mediates fibrotic progression by the generation of mitochondrial reactive oxygen species (ROS), modulating mitochondrial biogenesis, and promoting apoptosis resistance; however, the mechanism(s) by which NOX4 localizes to mitochondria during fibrosis is not known. Here, we show that NOX4 localized to the mitochondrial matrix following asbestos exposure in lung macrophages via direct interaction with TIM23. TIM23 and NOX4 interaction was found in lung macrophages from human subjects with asbestosis, while it was absent in mice harboring a conditional deletion of NOX4 in lung macrophages. This interaction was localized to the proximal transmembrane region of NOX4. Mechanistically, TIM23 augmented NOX4-induced mitochondrial ROS and metabolic reprogramming to oxidative phosphorylation. Silencing TIM23 decreased mitochondrial ROS and oxidative phosphorylation. These observations highlight the important role of the mitochondrial translocase TIM23 interaction with NOX4. Moreover, this interaction is required for mitochondrial redox signaling and metabolic reprogramming in lung macrophages.


Subject(s)
Macrophages, Alveolar , Mitochondria , NADPH Oxidase 4 , Animals , Humans , Mice , Fibrosis , Macrophages, Alveolar/metabolism , Mitochondria/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Reactive Oxygen Species/metabolism
4.
JCI Insight ; 8(9)2023 05 08.
Article in English | MEDLINE | ID: mdl-36928191

ABSTRACT

Emerging data indicate an association between environmental heavy metal exposure and lung disease, including lower respiratory tract infections (LRTIs). Here, we show by single-cell RNA sequencing an increase in Pparg gene expression in lung macrophages from mice exposed to cadmium and/or infected with Streptococcus pneumoniae. However, the heavy metal cadmium or infection mediated an inhibitory posttranslational modification of peroxisome proliferator-activated receptor γ (PPARγ) to exacerbate LRTIs. Cadmium and infection increased ERK activation to regulate PPARγ degradation in monocyte-derived macrophages. Mice harboring a conditional deletion of Pparg in monocyte-derived macrophages had more severe S. pneumoniae infection after cadmium exposure, showed greater lung injury, and had increased mortality. Inhibition of ERK activation with BVD-523 protected mice from lung injury after cadmium exposure or infection. Moreover, individuals residing in areas of high air cadmium levels had increased cadmium concentration in their bronchoalveolar lavage (BAL) fluid, increased barrier dysfunction, and showed PPARγ inhibition that was mediated, at least in part, by ERK activation in isolated BAL cells. These observations suggest that impaired activation of PPARγ in monocyte-derived macrophages exacerbates lung injury and the severity of LRTIs.


Subject(s)
Lung Injury , PPAR gamma , Mice , Animals , PPAR gamma/metabolism , Lung/metabolism , Cadmium/toxicity , Cadmium/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , Macrophages, Alveolar/metabolism
5.
Aging Cell ; 21(9): e13674, 2022 09.
Article in English | MEDLINE | ID: mdl-35934931

ABSTRACT

Mitochondrial dysfunction has been associated with age-related diseases, including idiopathic pulmonary fibrosis (IPF). We provide evidence that implicates chronic elevation of the mitochondrial anion carrier protein, uncoupling protein-2 (UCP2), in increased generation of reactive oxygen species, altered redox state and cellular bioenergetics, impaired fatty acid oxidation, and induction of myofibroblast senescence. This pro-oxidant senescence reprogramming occurs in concert with conventional actions of UCP2 as an uncoupler of oxidative phosphorylation with dissipation of the mitochondrial membrane potential. UCP2 is highly expressed in human IPF lung myofibroblasts and in aged fibroblasts. In an aging murine model of lung fibrosis, the in vivo silencing of UCP2 induces fibrosis regression. These studies indicate a pro-fibrotic function of UCP2 in chronic lung disease and support its therapeutic targeting in age-related diseases associated with impaired tissue regeneration and organ fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Myofibroblasts , Uncoupling Protein 2 , Aged , Animals , Fibroblasts/metabolism , Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Mice , Myofibroblasts/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism
6.
Cell Death Differ ; 29(1): 118-132, 2022 01.
Article in English | MEDLINE | ID: mdl-34413485

ABSTRACT

The mitochondrial calcium uniporter (MCU) regulates metabolic reprogramming in lung macrophages and the progression of pulmonary fibrosis. Fibrosis progression is associated with apoptosis resistance in lung macrophages; however, the mechanism(s) by which apoptosis resistance occurs is poorly understood. Here, we found a marked increase in mitochondrial B-cell lymphoma-2 (Bcl-2) in lung macrophages from subjects with idiopathic pulmonary fibrosis (IPF). Similar findings were seen in bleomycin-injured wild-type (WT) mice, whereas Bcl-2 was markedly decreased in mice expressing a dominant-negative mitochondrial calcium uniporter (DN-MCU). Carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme for fatty acid ß-oxidation, directly interacted with Bcl-2 by binding to its BH3 domain, which anchored Bcl-2 in the mitochondria to attenuate apoptosis. This interaction was dependent on Cpt1a activity. Lung macrophages from IPF subjects had a direct correlation between CPT1A and Bcl-2, whereas the absence of binding induced apoptosis. The deletion of Bcl-2 in macrophages protected mice from developing pulmonary fibrosis. Moreover, mice had resolution when Bcl-2 was deleted or was inhibited with ABT-199 after fibrosis was established. These observations implicate an interplay between macrophage fatty acid ß-oxidation, apoptosis resistance, and dysregulated fibrotic remodeling.


Subject(s)
Idiopathic Pulmonary Fibrosis , Animals , Apoptosis , Bleomycin , Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Macrophages, Alveolar , Mice
8.
FASEB J ; 35(6): e21675, 2021 06.
Article in English | MEDLINE | ID: mdl-34038004

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease associated with mitochondrial oxidative stress. Mitochondrial reactive oxygen species (mtROS) are important for cell homeostasis by regulating mitochondrial dynamics. Here, we show that IPF BAL cells exhibited increased mitochondrial biogenesis that is, in part, due to increased nuclear expression of peroxisome proliferator-activated receptor-É£ (PPARÉ£) coactivator (PGC)-1α. Increased PPARGC1A mRNA expression directly correlated with reduced pulmonary function in IPF subjects. Oxidant-mediated activation of the p38 MAPK via Akt1 regulated PGC-1α activation to increase mitochondrial biogenesis in monocyte-derived macrophages. Demonstrating the importance of PGC-1α in fibrotic repair, mice harboring a conditional deletion of Ppargc1a in monocyte-derived macrophages or mice administered a chemical inhibitor of mitochondrial division had reduced biogenesis and increased apoptosis, and the mice were protected from pulmonary fibrosis. These observations suggest that Akt1-mediated regulation of PGC-1α maintains mitochondrial homeostasis in monocyte-derived macrophages to induce apoptosis resistance, which contributes to the pathogenesis of pulmonary fibrosis.


Subject(s)
Macrophages, Alveolar/pathology , Mitochondria/pathology , Mitochondrial Dynamics , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Protein Processing, Post-Translational , Pulmonary Fibrosis/pathology , Adolescent , Adult , Aged , Animals , Apoptosis , Female , Homeostasis , Humans , Macrophages, Alveolar/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Mitochondria/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/chemistry , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Phosphorylation , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Young Adult
9.
J Biol Chem ; 297(1): 100810, 2021 07.
Article in English | MEDLINE | ID: mdl-34023385

ABSTRACT

Pulmonary fibrosis is a progressive lung disease often occurring secondary to environmental exposure. Asbestos exposure is an important environmental mediator of lung fibrosis and remains a significant cause of disease despite strict regulations to limit exposure. Lung macrophages play an integral role in the pathogenesis of fibrosis induced by asbestos (asbestosis), in part by generating reactive oxygen species (ROS) and promoting resistance to apoptosis. However, the mechanism by which macrophages acquire apoptosis resistance is not known. Here, we confirm that macrophages isolated from asbestosis subjects are resistant to apoptosis and show they are associated with enhanced mitochondrial content of NADPH oxidase 4 (NOX4), which generates mitochondrial ROS generation. Similar results were seen in chrysotile-exposed WT mice, while macrophages from Nox4-/- mice showed increased apoptosis. NOX4 regulated apoptosis resistance by activating Akt1-mediated Bcl-2-associated death phosphorylation. Demonstrating the importance of NOX4-mediated apoptosis resistance in fibrotic remodeling, mice harboring a conditional deletion of Nox4 in monocyte-derived macrophages exhibited increased apoptosis and were protected from pulmonary fibrosis. Moreover, resolution occurred when Nox4 was deleted in monocyte-derived macrophages in mice with established fibrosis. These observations suggest that NOX4 regulates apoptosis resistance in monocyte-derived macrophages and contributes to the pathogenesis of pulmonary fibrosis. Targeting NOX4-mediated apoptosis resistance in monocyte-derived macrophages may provide a novel therapeutic target to protect against the development and/or progression of pulmonary fibrosis.


Subject(s)
Apoptosis , Disease Progression , Idiopathic Pulmonary Fibrosis/enzymology , Idiopathic Pulmonary Fibrosis/pathology , Macrophages/enzymology , Macrophages/pathology , NADPH Oxidase 4/metabolism , Animals , Cell Line , Female , Lung/pathology , Male , Mice, Inbred C57BL , Mitochondria/metabolism , Models, Biological , Monocytes/metabolism , Phosphorylation , Reactive Oxygen Species/metabolism , bcl-Associated Death Protein/metabolism
10.
Antioxidants (Basel) ; 10(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919055

ABSTRACT

BACKGROUND: Alveolar macrophages (AMs) are resident inflammatory cells in the lung that serve as early sentinels of infection or injury. We have identified thioredoxin reductase 1 inhibition by gold compounds increases activation of nuclear factor erythroid 2-related factor 2 (NRF2)-dependent pathways to attenuate inflammatory responses. The present studies utilized murine alveolar macrophages (MH-S) to test the hypothesis that the gold compound, auranofin (AFN), decreases interleukin (IL)-1ß expression through NRF2-mediated interactions with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway genes and/or increases in glutathione synthesis. METHODS: MH-S cells were treated with AFN and lipopolysaccharide (LPS) and analyzed at 6 and 24 h. The Il1b promoter was analyzed by chromatin immunoprecipitation for direct interaction with NRF2. RESULTS: Expression of IL-1ß, p-IκBα, p-p65 NF-kB, and NOD-, LRR-, and pyrin domain-containing protein 3 were elevated by LPS exposure, but only IL-1ß expression was suppressed by AFN treatment. Both AFN and LPS treatments increased cellular glutathione levels, but attenuation of glutathione synthesis by buthionine sulfoximine (BSO) did not alter expression of Il-1ß. Analysis revealed direct NRF2 binding to the Il1b promoter which was enhanced by AFN and inhibited the transcriptional activity of DNA polymerase II. CONCLUSIONS: Our data demonstrate that AFN-induced NRF2 activation directly suppresses IL-1ß synthesis independent of NFκB and glutathione-mediated antioxidant mechanisms. NRF2 binding to the promoter region of IL1ß directly inhibits transcription of the IL1ß gene. Collectively, our research suggests that gold compounds elicit NRF2-dependent pulmonary protection by suppressing macrophage-mediated inflammation.

11.
Lab Invest ; 101(1): 116-124, 2021 01.
Article in English | MEDLINE | ID: mdl-32773774

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease without effective therapy. Animal models effectively reproducing IPF disease features are needed to study the underlying molecular mechanisms. Tree shrews are genetically, anatomically, and metabolically closer to humans than rodents or dogs; therefore, the tree shrew model presents a unique opportunity for translational research in lung fibrosis. Here we demonstrate that tree shrews have in vivo and in vitro fibrotic responses induced by bleomycin and pro-fibrotic mediators. Bleomycin exposure induced lung fibrosis evidenced by histological and biochemical fibrotic changes. In primary tree shrew lung fibroblasts, transforming growth factor beta-1 (TGF-ß1) induced myofibroblast differentiation, increased extracellular matrix (ECM) protein production, and focal adhesion kinase (FAK) activation. Tree shrew lung fibroblasts showed enhanced migration and increased matrix invasion in response to platelet derived growth factor BB (PDGF-BB). Inhibition of FAK significantly attenuated pro-fibrotic responses in lung fibroblasts. The data demonstrate that tree shrews have in vivo and in vitro fibrotic responses similar to that observed in IPF. The data, for the first time, support that the tree shrew model of lung fibrosis is a new and promising experimental animal model for studying the pathophysiology and therapeutics of lung fibrosis.


Subject(s)
Disease Models, Animal , Idiopathic Pulmonary Fibrosis/chemically induced , Tupaiidae , Animals , Bleomycin , Cell Differentiation , Fibroblasts/physiology , Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Primary Cell Culture
12.
PLoS One ; 15(11): e0241323, 2020.
Article in English | MEDLINE | ID: mdl-33141839

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease with a high morbidity and mortality. Some of the mechanisms of fibrosis development have been described using rodent models; however, the relevance of findings in these animal models is difficult to assess. New innovative models are needed that closely mimic IPF disease pathology. METHODS: To overcome this unmet need of investigating IPF with a relevant model, we utilized tree shrews, which are genetically, anatomically, and metabolically similar to primates and humans. Using human antibodies and primers, we investigated the role of macrophage phenotypic switching in normal and IPF subjects and bleomycin-injured tree shrews. RESULTS: Bronchoalveolar lavage (BAL) cells from tree shrews expressed human markers, and there was recruitment of monocyte-derived macrophages (MDMs) to the lung in IPF subjects and bleomycin-injured tree shrews. MDMs were polarized to a profibrotic phenotype in IPF and in bleomycin-injured tree shrews. Resident alveolar macrophages (RAMs) expressed proinflammatory markers regardless of bleomycin exposure. Tree shrews developed bleomycin-induced pulmonary fibrosis with architectural distortion in parenchyma and widespread collagen deposition. CONCLUSION: The profibrotic polarization of macrophages has been demonstrated to be present in IPF subjects and in fibrotic mice. Although the lung macrophages have long been considered to be homogeneous, recent evidence indicates that these cells are heterogeneous during multiple chronic lung diseases. Here, we show new data that indicate a critical and essential role for macrophage-fibroblast crosstalk promoting fibroblast differentiation and collagen production. in the development and progression of fibrosis. The current data strongly suggest development of therapeutics that attenuate of the profibrotic activation of MDMs may mitigate macrophage-fibroblast interaction. These observations demonstrate that tree shrews are an ideal animal model to investigate the pathogenesis of IPF as they are genetically, anatomically, and metabolically closer to humans than the more commonly used rodent models.


Subject(s)
Idiopathic Pulmonary Fibrosis/pathology , Tupaiidae/physiology , Adult , Animals , Bronchoalveolar Lavage , Cell Differentiation/genetics , Cell Polarity , Disease Models, Animal , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Gene Expression Regulation , Humans , Idiopathic Pulmonary Fibrosis/genetics , Macrophages/metabolism , Male , Middle Aged , Monocytes/pathology , Phenotype , Vital Capacity
13.
J Biol Chem ; 295(46): 15754-15766, 2020 11 13.
Article in English | MEDLINE | ID: mdl-32917723

ABSTRACT

Heavy metals released into the environment have a significant effect on respiratory health. Lung macrophages are important in mounting an inflammatory response to injury, but they are also involved in repair of injury. Macrophages develop mixed phenotypes in complex pathological conditions and polarize to a predominant phenotype depending on the duration and stage of injury and/or repair. Little is known about the reprogramming required for lung macrophages to switch between these divergent functions; therefore, understanding the mechanism(s) by which macrophages promote metabolic reprogramming to regulate lung injury is essential. Here, we show that lung macrophages polarize to a pro-inflammatory, classically activated phenotype after cadmium-mediated lung injury. Because metabolic adaptation provides energy for the diverse macrophage functions, these classically activated macrophages show metabolic reprogramming to glycolysis. RNA-Seq revealed up-regulation of glycolytic enzymes and transcription factors regulating glycolytic flux in lung macrophages from cadmium-exposed mice. Moreover, cadmium exposure promoted increased macrophage glycolytic function with enhanced extracellular acidification rate, glycolytic metabolites, and lactate excretion. These observations suggest that cadmium mediates the persistence of classically activated lung macrophages to exacerbate lung injury.


Subject(s)
Cadmium/toxicity , Lung Injury/etiology , Macrophages/metabolism , Animals , Bronchoalveolar Lavage Fluid/immunology , Cadmium/metabolism , Glycolysis/drug effects , Humans , Lipopolysaccharides/pharmacology , Lung Injury/metabolism , Macrophage Activation/drug effects , Macrophages/cytology , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Reactive Oxygen Species/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
14.
Redox Biol ; 33: 101426, 2020 06.
Article in English | MEDLINE | ID: mdl-31928788

ABSTRACT

Mechanisms underlying the pathogenesis of pulmonary fibrosis remain incompletely understood. Emerging evidence suggests changes in mitochondrial quality control are a critical determinant in many lung diseases, including chronic obstructive pulmonary disease, asthma, pulmonary hypertension, acute lung injury, lung cancer, and in the susceptibility to pulmonary fibrosis. Once thought of as the kidney-bean shaped powerhouses of the cell, mitochondria are now known to form interconnected networks that rapidly and continuously change their size to meet cellular metabolic demands. Mitochondrial quality control modulates cell fate and homeostasis, and diminished mitochondrial quality control results in mitochondrial dysfunction, increased reactive oxygen species (ROS) production, reduced ATP production, and often induces intrinsic apoptosis. Here, we review the role of the mitochondria in alveolar epithelial cells, lung macrophages, and fibroblasts within the context of pulmonary fibrosis.


Subject(s)
Mitochondria , Pulmonary Fibrosis , Alveolar Epithelial Cells , Apoptosis , Humans , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Reactive Oxygen Species/metabolism
15.
J Clin Invest ; 129(11): 4962-4978, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31609245

ABSTRACT

Macrophages are important in mounting an innate immune response to injury as well as in repair of injury. Gene expression of Rho proteins is known to be increased in fibrotic models; however, the role of these proteins in idiopathic pulmonary fibrosis (IPF) is not known. Here, we show that BAL cells from patients with IPF have a profibrotic phenotype secondary to increased activation of the small GTPase Rac1. Rac1 activation requires a posttranslational modification, geranylgeranylation, of the C-terminal cysteine residue. We found that by supplying more substrate for geranylgeranylation, Rac1 activation was substantially increased, resulting in profibrotic polarization by increasing flux through the mevalonate pathway. The increased flux was secondary to greater levels of acetyl-CoA from metabolic reprogramming to ß oxidation. The polarization mediated fibrotic repair in the absence of injury by enhancing macrophage/fibroblast signaling. These observations suggest that targeting the mevalonate pathway may abrogate the role of macrophages in dysregulated fibrotic repair.


Subject(s)
Idiopathic Pulmonary Fibrosis/metabolism , Macrophages/metabolism , Mevalonic Acid/metabolism , Acetyl Coenzyme A/genetics , Acetyl Coenzyme A/metabolism , Adolescent , Adult , Aged , Animals , Female , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Macrophages/pathology , Male , Mice , Mice, Knockout , Middle Aged , Neuropeptides/genetics , Neuropeptides/metabolism , Oxidation-Reduction , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
16.
Redox Biol ; 26: 101307, 2019 09.
Article in English | MEDLINE | ID: mdl-31473487

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with an increased mortality. Metabolic reprogramming has a critical role in multiple chronic diseases. Lung macrophages expressing the mitochondrial calcium uniporter (MCU) have a critical role in fibrotic repair, but the contribution of MCU in macrophage metabolism is not known. Here, we show that MCU regulates peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and metabolic reprogramming to fatty acid oxidation (FAO) in macrophages. MCU regulated PGC-1α expression by increasing the phosphorylation of ATF-2 by the p38 MAPK in a redox-dependent manner. The expression and activation of PGC-1α via the p38 MAPK was regulated by MCU-mediated mitochondrial calcium uptake, which is linked to increased mitochondrial ROS (mtROS) production. Mice harboring a conditional expression of dominant-negative MCU in macrophages had a marked reduction in mtROS and FAO and were protected from pulmonary fibrosis. Moreover, IPF lung macrophages had evidence of increased MCU and mitochondrial calcium, increased phosphorylation of ATF2 and p38, as well as increased expression of PGC-1α. These observations suggest that macrophage MCU-mediated metabolic reprogramming contributes to fibrotic repair after lung injury.


Subject(s)
Calcium Channels/metabolism , Energy Metabolism , Gene Expression Regulation , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Adult , Aged , Animals , Calcium/metabolism , Disease Models, Animal , Female , Humans , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Male , Mice , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Oxidoreductases Acting on CH-NH2 Group Donors/metabolism , Oxygen Consumption , Phenotype , Pulmonary Fibrosis/pathology , Reactive Oxygen Species/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
17.
JCI Insight ; 4(16)2019 08 22.
Article in English | MEDLINE | ID: mdl-31434799

ABSTRACT

Macrophage activation is implicated in the development of pulmonary fibrosis by generation of profibrotic molecules. Although NADPH oxidase 4 (NOX4) is known to contribute to pulmonary fibrosis, its effects on macrophage activation and mitochondrial redox signaling are unclear. Here, we show that NOX4 is crucial for lung macrophage profibrotic polarization and fibrotic repair after asbestos exposure. NOX4 was elevated in lung macrophages from subjects with asbestosis, and mice harboring a deletion of NOX4 in lung macrophages were protected from asbestos-induced fibrosis. NOX4 promoted lung macrophage profibrotic polarization and increased production of profibrotic molecules that induce collagen deposition. Mechanistically, NOX4 further augmented mitochondrial ROS production and induced mitochondrial biogenesis. Targeting redox signaling and mitochondrial biogenesis prevented the profibrotic polarization of lung macrophages by reducing the production of profibrotic molecules. These observations provide evidence that macrophage NOX4 is a potentially novel therapeutic target to halt the development of asbestos-induced pulmonary fibrosis.


Subject(s)
Asbestosis/metabolism , Macrophages, Alveolar/physiology , Macrophages/physiology , NADPH Oxidase 4/metabolism , Organelle Biogenesis , Adult , Aged , Animals , Cell Line , Cell Polarity , Female , Fibrosis , Humans , Male , Mice , Middle Aged , Phenotype , Reactive Oxygen Species/metabolism
19.
Am J Respir Crit Care Med ; 198(10): 1288-1301, 2018 11 15.
Article in English | MEDLINE | ID: mdl-29897791

ABSTRACT

RATIONALE: Cigarette smoking is prevalent in the United States and is the leading cause of preventable diseases. A prominent complication of smoking is an increase in lower respiratory tract infections (LRTIs). Although LRTIs are known to be increased in subjects that smoke, the mechanism(s) by which this occurs is poorly understood. OBJECTIVES: Determine how cigarette smoke (CS) reduces reactive oxygen species (ROS) production by the phagocytic NOX2 (NADPH oxidase 2), which is essential for innate immunity in lung macrophages. METHODS: NOX2-derived ROS and Rac2 (Ras-related C3 botulinum toxin substrate 2) activity were determined in BAL cells from wild-type and Rac2-/- mice exposed to CS or cadmium and in BAL cells from subjects that smoke. Host defense to respiratory pathogens was analyzed in mice infected with Streptococcus pneumoniae. MEASUREMENTS AND MAIN RESULTS: NOX2-derived ROS in BAL cells was reduced in mice exposed to CS via inhibition of the small GTPase Rac2. These mice had greater bacterial burden and increased mortality compared with air-exposed mice. BAL fluid from CS-exposed mice had increased levels of cadmium, which mediated the effect on Rac2. Similar observations were seen in human subjects that smoke. To support the importance of Rac2 in the macrophage immune response, overexpression of constitutively active Rac2 by lentiviral administration increased NOX2-derived ROS, decreased bacterial burden in lung tissue, and increased survival compared with CS-exposed control mice. CONCLUSIONS: These observations suggest that therapies to maintain Rac2 activity in lung macrophages restore host defense against respiratory pathogens and diminish the prevalence of LRTIs in subjects that smoke.


Subject(s)
Cigarette Smoking/adverse effects , Cigarette Smoking/immunology , Pneumonia/etiology , Pneumonia/immunology , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/immunology , Animals , Disease Models, Animal , Female , Humans , Immunity, Innate/immunology , Lung/immunology , Macrophages , Male , Mice , Mice, Inbred C57BL , Middle Aged , Reactive Oxygen Species/immunology , Severity of Illness Index , RAC2 GTP-Binding Protein
20.
FASEB J ; 31(7): 3072-3083, 2017 07.
Article in English | MEDLINE | ID: mdl-28351840

ABSTRACT

Fibrosis in multiple organs, including the liver, kidney, and lung, often occurs secondary to environmental exposure. Asbestos exposure is one important environmental cause of lung fibrosis. The mechanisms that mediate fibrosis is not fully understood, although mitochondrial oxidative stress in alveolar macrophages is critical for fibrosis development. Mitochondrial Ca2+ levels can be associated with production of reactive oxygen species. Here, we show that patients with asbestosis have higher levels of mitochondrial Ca2+ compared with normal patients. The mitochondrial calcium uniporter (MCU) is a highly selective ion channel that transports Ca2+ into the mitochondrial matrix to modulate metabolism. Asbestos exposure increased mitochondrial Ca2+ influx in alveolar macrophages from wild-type, but not MCU+/-, mice. MCU expression polarized macrophages to a profibrotic phenotype after exposure to asbestos, and the profibrotic polarization was regulated by MCU-mediated ATP production. Profibrotic polarization was abrogated when MCU was absent or its activity was blocked. Of more importance, mice that were deficient in MCU were protected from pulmonary fibrosis. Regulation of mitochondrial Ca2+ suggests that MCU may play a pivotal role in the development of fibrosis and could potentially be a therapeutic target for pulmonary fibrosis.-Gu, L., Larson-Casey, J. L., Carter, A. B. Macrophages utilize the mitochondrial calcium uniporter for profibrotic polarization.


Subject(s)
Asbestosis/metabolism , Calcium Channels/metabolism , Gene Expression Regulation/physiology , Macrophages/physiology , Adolescent , Adult , Animals , Calcium/metabolism , Calcium Channels/genetics , Haplotypes , Humans , Mice , Middle Aged , Pulmonary Fibrosis , Reactive Oxygen Species , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...