Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Geroscience ; 46(1): 769-782, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38102439

ABSTRACT

AIMS: Alzheimer's disease (AD) is characterized by the accumulation of amyloid beta (Aß) in the brain. The deposition of Aß is believed to initiate a detrimental cascade, including cerebral hypometabolism, accelerated brain atrophy, and cognitive problems-ultimately resulting in AD. However, the timing and causality of the cascade resulting in AD are not yet fully established. Therefore, we examined whether early Aß accumulation affects cerebral glucose metabolism, atrophy rate, and age-related cognitive decline before the onset of neurodegenerative disease. METHODS: Participants from the Metropolit 1953 Danish Male Birth Cohort underwent brain positron emission tomography (PET) imaging using the radiotracers [11C]Pittsburgh Compound-B (PiB) (N = 70) and [18F]Fluorodeoxyglucose (FDG) (N = 76) to assess cerebral Aß accumulation and glucose metabolism, respectively. The atrophy rate was calculated from anatomical magnetic resonance imaging (MRI) scans conducted presently and 10 years ago. Cognitive decline was examined from neurophysiological tests conducted presently and ten or 5 years ago. RESULTS: Higher Aß accumulation in AD-critical brain regions correlated with greater visual memory decline (p = 0.023). Aß accumulation did not correlate with brain atrophy rates. Increased cerebral glucose metabolism in AD-susceptible regions correlated with worse verbal memory performance (p = 0.040). CONCLUSIONS: Aß accumulation in known AD-related areas was associated with subtle cognitive deficits. The association was observed before hypometabolism or accelerated brain atrophy, suggesting that Aß accumulation is involved early in age-related cognitive dysfunction. The association between hypermetabolism and worse memory performance may be due to early compensatory mechanisms adapting for malfunctioning neurons by increasing metabolism.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Male , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/metabolism , Cognition , Atrophy , Glucose/metabolism
2.
Front Neurosci ; 17: 1229509, 2023.
Article in English | MEDLINE | ID: mdl-37869511

ABSTRACT

Introduction: Patients with type 1 diabetes (T1D) demonstrate brain alterations, including white matter lesions and cerebral atrophy. In this case-control study, we investigated if a reason for this atrophy could be because of diabetes-related complications affecting cerebrovascular or cerebral glycolytic functions. Cerebral physiological dysfunction can lead to energy deficiencies and, consequently, neurodegeneration. Methods: We examined 33 patients with T1D [18 females, mean age: 50.8 years (range: 26-72)] and 19 matched healthy controls [7 females, mean age: 45.0 years (range: 24-64)]. Eleven (33%) of the patients had albuminuria. Total brain volume, brain parenchymal fraction, gray matter volume and white matter volume were measured by anatomical MRI. Cerebral vascular and glycolytic functions were investigated by measuring global cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO2) and cerebral lactate concentration in response to the inhalation of hypoxic air (12-14% fractional oxygen) using phase-contrast MRI and magnetic resonance spectroscopy (MRS) techniques. The inspiration of hypoxic air challenges both cerebrovascular and cerebral glycolytic physiology, and an impaired response will reveal a physiologic dysfunction. Results: Patients with T1D and albuminuria had lower total brain volume, brain parenchymal fraction, and gray matter volume than healthy controls and patients without albuminuria. The inhalation of hypoxic air increased CBF and lactate in all groups. Patients with albuminuria had a significantly (p = 0.032) lower lactate response compared to healthy controls. The CBF response was lower in patients with albuminuria compared to healthy controls, however not significantly (p = 0.24) different. CMRO2 was unaffected by the hypoxic challenge in all groups (p > 0.16). A low lactate response was associated with brain atrophy, characterized by reduced total brain volume (p = 0.003) and reduced gray matter volume (p = 0.013). Discussion: We observed a reduced response of the lactate concentration as an indication of impaired glycolytic activity, which correlated with brain atrophy. Inadequacies in upregulating cerebral glycolytic activity, perhaps from reduced glucose transporters in the brain or hypoxia-inducible factor 1 pathway dysfunction, could be a complication in diabetes contributing to the development of neurodegeneration and declining brain health.

3.
Diagnostics (Basel) ; 13(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37238288

ABSTRACT

BACKGROUND AND PURPOSE: Magnetic resonance spectroscopy (MRS)-a method of analysing metabolites in vivo-has been utilized in several studies of brain glioma biomarkers at lower field strengths. At ultra-high field strengths, MRS provides an improved signal-to-noise-ratio and spectral resolution, but 7T studies on patients with gliomas are sparse. The purpose of this exploratory study was to evaluate the potential clinical implication of the use of single-voxel MRS at 7T to assess metabolic information on lesions in a pilot cohort of patients with grade II and III gliomas. METHODS: We scanned seven patients and seven healthy controls using the semi-localization by adiabatic-selective refocusing sequence on a Philips Achieva 7T system with a standard dual-transmit head coil. The metabolic ratios were calculated relative to water and total creatine. Additionally, 2-hydroxyglutarate (2-HG) MRS was carried out in four of the patients, and the 2-HG concentration was calculated relative to water. RESULTS: When comparing the tumour data to control regions in both patients and healthy controls, we found that the choline/creatine and myo-inositol/creatine ratios were significantly increased and that the N-acetylaspartate/creatine and the neurotransmitter glutamate/creatine ratios were significantly decreased. The N-acetylaspartate/water and glutamate/water ratios were also significantly decreased. The lactate/water and lactate/creatine ratios showed increases, although not significant. The GABA/water ratio was significantly decreased, but the GABA/creatine ratio was not. MRS spectra showed the presence of 2-HG in three of the four patients studied. Three of the patients, including the MRS 2-HG-negative patient, were operated on, and all of them had the IDH mutation. CONCLUSION: Our findings were consistent with the existing literature on 3T and 7T MRS.

5.
J Am Heart Assoc ; 12(3): e027712, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36734354

ABSTRACT

Background GLP-1 (glucagon-like peptide-1) receptor agonists exert beneficial long-term effects on cardiovascular and renal outcomes. In humans, the natriuretic effect of GLP-1 depends on GLP-1 receptor interaction, is accompanied by suppression of angiotensin II, and is independent of changes in renal plasma flow. In rodents, angiotensin II constricts vasa recta and lowers medullary perfusion. The current randomized, controlled, crossover study was designed to test the hypothesis that GLP-1 increases renal medullary perfusion in healthy humans. Methods and Results Healthy male participants (n=10, aged 27±4 years) ingested a fixed sodium intake for 4 days and were examined twice during a 1-hour infusion of either GLP-1 (1.5 pmol/kg per minute) or placebo together with infusion of 0.9% NaCl (750 mL/h). Interleaved measurements of renal arterial blood flow, oxygenation (R2*), and perfusion were acquired in the renal cortex and medulla during infusions, using magnetic resonance imaging. GLP-1 infusion increased medullary perfusion (32±7%, P<0.001) and cortical perfusion (13±4%, P<0.001) compared with placebo. Here, NaCl infusion decreased medullary perfusion (-5±2%, P=0.007), whereas cortical perfusion remained unchanged. R2* values increased by 3±2% (P=0.025) in the medulla and 4±1% (P=0.008) in the cortex during placebo, indicative of decreased oxygenation, but remained unchanged during GLP-1. Blood flow in the renal artery was not altered significantly by either intervention. Conclusions GLP-1 increases predominantly medullary but also cortical perfusion in the healthy human kidney and maintains renal oxygenation during NaCl loading. In perspective, suppression of angiotensin II by GLP-1 may account for the increase in regional perfusion. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04337268.


Subject(s)
Angiotensin II , Glucagon-Like Peptide 1 , Kidney , Sodium Chloride , Humans , Male , Cross-Over Studies , Glucagon-Like Peptide 1/pharmacology , Kidney Medulla , Perfusion , Renal Circulation , Young Adult , Adult
6.
J Headache Pain ; 24(1): 15, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36823546

ABSTRACT

OBJECTIVE: To examine whether white matter hyperintensities (WMHs) and cerebral microbleeds (CMBs) are more prevalent in people with persistent post-traumatic headache attributed to mild traumatic brain injury (TBI), compared with healthy controls. METHODS: A magnetic resonance imaging (MRI) study of adults with persistent post-traumatic headache attributed to mild TBI and age- and gender-matched healthy controls. A semi-structured interview and validated self-report instruments were used to record data on demographics, clinical characteristics, and comorbidities. Imaging data were obtained on a 3T MRI Scanner using a 32-channel head coil. Participants and controls underwent a single MRI session, in which fluid-attenuated inversion recovery was used to visualize WMHs, and susceptibility-weighted imaging was used to detect CMBs. The primary outcomes were (I) the difference in the mean number of WMHs between participants with persistent post-traumatic headache and healthy controls and (II) the difference in the mean number of CMBs between participants with persistent post-traumatic headache and healthy controls. All images were examined by a certified neuroradiologist who was blinded to the group status of the participants and controls. RESULTS: A total of 97 participants with persistent post-traumatic headache and 96 age- and gender-matched healthy controls provided imaging data eligible for analyses. Among 97 participants with persistent post-traumatic headache, 43 (44.3%) participants presented with ≥ 1 WMH, and 3 (3.1%) participants presented with ≥ 1 CMB. Compared with controls, no differences were found in the mean number of WMHs (2.7 vs. 2.1, P = 0.58) and the mean number of CMBs (0.03 vs. 0.04, P = 0.98). CONCLUSIONS: WMHs and CMBs were not more prevalent in people with persistent post-traumatic headache than observed in healthy controls. Future studies should focus on other MRI techniques to identify radiologic biomarkers of post-traumatic headache.


Subject(s)
Brain Concussion , Post-Traumatic Headache , White Matter , Adult , Humans , Brain Concussion/complications , Brain Concussion/diagnostic imaging , Post-Traumatic Headache/pathology , White Matter/pathology , Magnetic Resonance Imaging/methods , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/pathology
7.
Geroscience ; 45(2): 1161-1175, 2023 04.
Article in English | MEDLINE | ID: mdl-36534276

ABSTRACT

Hippocampal blood-brain barrier (BBB) permeability may increase in normal healthy ageing and contribute to neurodegenerative disease. To examine this hypothesis, we investigated the correlation between blood-brain barrier (BBB) permeability, regional brain volume, memory functions and health and lifestyle factors in The Metropolit 1953 Danish Male Birth Cohort. We used dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with a gadolinium-based contrast agent to assess BBB permeability in 77 participants in the cohort. BBB permeability was measured as Ki values in the hippocampus, thalamus and white matter. Over a 10-year period, we observed progressive atrophy of both the left and right hippocampus (p = 0.001). There was no significant correlation between current BBB permeability and hippocampal volume, prior atrophy or cognition. The hippocampus volume ratio was associated with better visual and verbal memory scores (p < 0.01). Regional BBB differences revealed higher Ki values in the hippocampus and white matter than in the thalamus (p < 0.001). Participants diagnosed with type II diabetes had significantly higher BBB permeability in the white matter (p = 0.015) and thalamus (p = 0.016), which was associated with a higher Fazekas score (p = 0.024). We do not find evidence that BBB integrity is correlated with age-related hippocampal atrophy or cognitive functions. The association between diabetes, white matter hyperintensities and increased BBB permeability is consistent with the idea that cerebrovascular disease compromises BBB integrity. Our findings suggest that the hippocampus is particularly prone to age-related atrophy, which may explain some of the cognitive changes that accompany older age, but this prior atrophy is not correlated with current BBB permeability.


Subject(s)
Diabetes Mellitus, Type 2 , Neurodegenerative Diseases , Humans , Male , Middle Aged , Blood-Brain Barrier , Hippocampus/diagnostic imaging , Hippocampus/pathology , Cognition , Permeability , Atrophy
8.
J Magn Reson Imaging ; 57(4): 1229-1240, 2023 04.
Article in English | MEDLINE | ID: mdl-35993510

ABSTRACT

BACKGROUND: Dynamic contrast-enhanced MRI (DCE-MRI) has seen increasing use for quantification of low level of blood-brain barrier (BBB) leakage in various pathological disease states and correlations with clinical outcomes. However, currently there exists limited studies on reproducibility in healthy controls, which is important for the establishment of a normality threshold for future research. PURPOSE: To investigate the reproducibility of DCE-MRI and to evaluate the effect of arterial input function (AIF) selection and manual region of interests (ROI) delineation vs. automated global segmentation. STUDY TYPE: Prospective. POPULATION: A total of 16 healthy controls; 11 females; mean age 28.7 years (SD 10.1). FIELD STRENGTH/SEQUENCE: A 3T; GE DCE; 3D TFE T1WI. 2D TSE T2. ASSESSMENT: The influx constant Ki , a measure of BBB permeability, and Vp , the blood plasma volume, was calculated using the Patlak model. Cerebral blood flow (CBF) was calculated using Tikhonov model free deconvolution. Manual tissue ROIs, drawn by H.J.S. (30+ years of experience), were compared to automatic tissue segmentation. STATISTICAL TESTS: Intraclass correlation coefficient (ICC) and repeatability coefficient (RC) was used to assess reproducibility. Bland-Altman plots were used to evaluate agreement between measurements day 1 vs. day 2, and manual vs. segmentation method. RESULTS: Ki showed excellent reproducibility in both white and gray matter with an ICC between 0.79 and 0.82 and excellent agreement between manual ROI and automatic segmentation, with an ICC of 0.89 for Ki in WM. Furthermore, Ki values in gray and white matter conforms with histological tissue characteristics, where gray matter generally has a 2-fold higher vessel density. The highest reproducibility measures of Ki (ICC = 0.83), CBF (ICC = 0.77) and Vd (ICC = 0.83) was obtained with the AIF sampled in the internal carotid artery (ICA). DATA CONCLUSION: DCE-MRI shows excellent reproducibility of pharmacokinetic variables derived from healthy controls. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Brain , Contrast Media , Female , Humans , Adult , Reproducibility of Results , Prospective Studies , Contrast Media/pharmacokinetics , Magnetic Resonance Imaging/methods , Perfusion
10.
Eur J Nucl Med Mol Imaging ; 49(13): 4677-4691, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35907033

ABSTRACT

PURPOSE: Both amino acid positron emission tomography (PET) and magnetic resonance imaging (MRI) blood volume (BV) measurements are used in suspected recurrent high-grade gliomas. We compared the separate and combined diagnostic yield of simultaneously acquired dynamic contrast-enhanced (DCE) perfusion MRI and O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET) PET in patients with anaplastic astrocytoma and glioblastoma following standard therapy. METHODS: A total of 76 lesions in 60 hybrid [18F]FET PET/MRI scans with DCE MRI from patients with suspected recurrence of anaplastic astrocytoma and glioblastoma were included retrospectively. BV was measured from DCE MRI employing a 2-compartment exchange model (2CXM). Diagnostic performances of maximal tumour-to-background [18F]FET uptake (TBRmax), maximal BV (BVmax) and normalised BVmax (nBVmax) were determined by ROC analysis using 6-month histopathological (n = 28) or clinical/radiographical follow-up (n = 48) as reference. Sensitivity and specificity at optimal cut-offs were determined separately for enhancing and non-enhancing lesions. RESULTS: In progressive lesions, all BV and [18F]FET metrics were higher than in non-progressive lesions. ROC analyses showed higher overall ROC AUCs for TBRmax than both BVmax and nBVmax in both lesion-wise (all lesions, p = 0.04) and in patient-wise analysis (p < 0.01). Combining TBRmax with BV metrics did not increase ROC AUC. Lesion-wise positive fraction/sensitivity/specificity at optimal cut-offs were 55%/91%/84% for TBRmax, 45%/77%/84% for BVmax and 59%/84%/72% for nBVmax. Combining TBRmax and best-performing BV cut-offs yielded lesion-wise sensitivity/specificity of 75/97%. The fraction of progressive lesions was 11% in concordant negative lesions, 33% in lesions only BV positive, 64% in lesions only [18F]FET positive and 97% in concordant positive lesions. CONCLUSION: The overall diagnostic accuracy of DCE BV imaging is good, but lower than that of [18F]FET PET. Adding DCE BV imaging did not improve the overall diagnostic accuracy of [18F]FET PET, but may improve specificity and allow better lesion-wise risk stratification than [18F]FET PET alone.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Brain Neoplasms/pathology , Retrospective Studies , Positron-Emission Tomography/methods , Astrocytoma/diagnostic imaging , Tyrosine/metabolism , Magnetic Resonance Imaging/methods , Perfusion , Magnetic Resonance Spectroscopy
11.
Front Neurol ; 13: 912828, 2022.
Article in English | MEDLINE | ID: mdl-35720104

ABSTRACT

The inflammatory processes observed in the central nervous system in multiple sclerosis (MS) could damage the endothelium of the cerebral vessels and lead to a dysfunctional regulation of vessel tonus and recruitment, potentially impairing cerebrovascular reactivity (CVR) and neurovascular coupling (NVC). Impaired CVR or NVC correlates with declining brain health and potentially plays a causal role in the development of neurodegenerative disease. Therefore, we examined studies on CVR or NVC in MS patients to evaluate the evidence for impaired cerebrovascular function as a contributing disease mechanism in MS. Twenty-three studies were included (12 examined CVR and 11 examined NVC). Six studies found no difference in CVR response between MS patients and healthy controls. Five studies observed reduced CVR in patients. This discrepancy can be because CVR is mainly affected after a long disease duration and therefore is not observed in all patients. All studies used CO2 as a vasodilating stimulus. The studies on NVC demonstrated diverse results; hence a conclusion that describes all the published observations is difficult to find. Future studies using quantitative techniques and larger study samples are needed to elucidate the discrepancies in the reported results.

12.
Cereb Cortex ; 32(6): 1295-1306, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34448827

ABSTRACT

Exposure to moderate hypoxia in humans leads to cerebral lactate production, which occurs even when the cerebral metabolic rate of oxygen (CMRO2) is unaffected. We searched for the mechanism of this lactate production by testing the hypothesis of upregulation of cerebral glycolysis mediated by hypoxic sensing. Describing the pathways counteracting brain hypoxia could help us understand brain diseases associated with hypoxia. A total of 65 subjects participated in this study: 30 subjects were exposed to poikilocapnic hypoxia, 14 were exposed to isocapnic hypoxia, and 21 were exposed to carbon monoxide (CO). Using this setup, we examined whether lactate production reacts to an overall reduction in arterial oxygen concentration or solely to reduced arterial oxygen partial pressure. We measured cerebral blood flow (CBF), CMRO2, and lactate concentrations by magnetic resonance imaging and spectroscopy. CBF increased (P < 10-4), whereas the CMRO2 remained unaffected (P > 0.076) in all groups, as expected. Lactate increased in groups inhaling hypoxic air (poikilocapnic hypoxia: $0.0136\ \frac{\mathrm{mmol}/\mathrm{L}}{\Delta{\mathrm{S}}_{\mathrm{a}}{\mathrm{O}}_2}$, P < 10-6; isocapnic hypoxia: $0.0142\ \frac{\mathrm{mmol}/\mathrm{L}}{\Delta{\mathrm{S}}_{\mathrm{a}}{\mathrm{O}}_2}$, P = 0.003) but was unaffected by CO (P = 0.36). Lactate production was not associated with reduced CMRO2. These results point toward a mechanism of lactate production by upregulation of glycolysis mediated by sensing a reduced arterial oxygen pressure. The released lactate may act as a signaling molecule engaged in vasodilation.


Subject(s)
Brain , Lactic Acid , Brain/physiology , Cerebrovascular Circulation/physiology , Humans , Hypoxia/complications , Hypoxia/metabolism , Oxygen , Oxygen Consumption
13.
Neuroimage Clin ; 32: 102824, 2021.
Article in English | MEDLINE | ID: mdl-34619653

ABSTRACT

In the pons, glutamatergic mechanisms are involved in regulating inhibitory descending pain modulation, serotoninergic neurotransmission as well as modulating the sensory transmission of the trigeminovascular system. Migraine involves altered pontine activation and structural changes, while biochemical, genetic and clinical evidence suggests that altered interictal pontine glutamate levels may be an important pathophysiological feature of migraine abetting to attack initiation. Migraine without aura patients were scanned outside attacks using a proton magnetic resonance spectroscopy protocol optimized for the pons at 3 Tesla. The measurements were performed on two separate days to increase accuracy and compared to similar repeated measurements in healthy controls. We found that interictal glutamate (i.e. Glx) levels in the pons of migraine patients (n = 33) were not different from healthy controls (n = 16) (p = 0.098), while total creatine levels were markedly increased in patients (9%, p = 0.009). There was no correlation of glutamate or total creatine levels to migraine frequency, days since the last attack, usual pain intensity of attacks or disease duration. In conclusion, migraine is not associated with altered interictal pontine glutamate levels. However, the novel finding of increased total creatine levels suggests that disequilibrium in the pontine energy metabolism could be an important feature of migraine pathophysiology.


Subject(s)
Migraine without Aura , Creatine , Glutamic Acid , Humans , Magnetic Resonance Imaging , Pons/diagnostic imaging , Proton Magnetic Resonance Spectroscopy
14.
J Headache Pain ; 22(1): 98, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34418951

ABSTRACT

BACKGROUND: Structural imaging has revealed changes in cortical thickness in migraine patients compared to healthy controls is reported, but presence of dynamic cortical and subcortical changes during migraine attack versus inter-ictal phase is unknown. The aim of the present study was to investigate possible changes in cortical thickness during spontaneous migraine attacks. We hypothesized that pain-related cortical area would be affected during the attack compared to an inter-ictal phase. METHODS: Twenty-five patients with migraine without aura underwent three-dimensional T1-weighted imaging on a 3-Tesla MRI scanner during spontaneous and untreated migraine attacks. Subsequently, 20 patients were scanned in the inter-ictal phase, while 5 patients did not show up for the inter-ictal scan. Four patients were excluded from the analysis because of bilateral migraine pain and another one patient was excluded due to technical error in the imaging. Longitudinal image processing was done using FreeSurfer. Repeated measures ANOVA was used for statistical analysis and to control for multiple comparison the level of significance was set at p = 0.025. RESULTS: In a total of 15 patients, we found reduced cortical thickness of the precentral (p = 0.023), pericalcarine (p = 0.024), and temporal pole (p = 0.017) cortices during the attack compared to the inter-ictal phase. Cortical volume was reduced in prefrontal (p = 0.018) and pericalcarine (p = 0.017) cortices. Hippocampus volume was increased during attack (p = 0.007). We found no correlations between the pain side or any other clinical parameters and the reduced cortical size. CONCLUSION: Spontaneous migraine attacks are accompanied by transient reduced cortical thickness and volume in pain-related areas. The findings constitute a fingerprint of acute pain in migraine patients, which can be used as a possible biomarker to predict antimigraine treatment effect in future studies. TRIAL REGISTRATION: The study was registered at ClinicalTrials.gov ( NCT02202486 ).


Subject(s)
Migraine without Aura , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Migraine without Aura/diagnostic imaging , Pain , Temporal Lobe
15.
J Appl Physiol (1985) ; 130(6): 1822-1835, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33914664

ABSTRACT

MRI can provide fundamental tools in decoding physiological stressors stimulated by training paradigms. Acute physiological changes induced by three diverse exercise protocols known to elicit similar levels of muscle hypertrophy were evaluated using muscle functional magnetic resonance imaging (mfMRI). The study was a cross-over study with participants (n = 10) performing three acute unilateral knee extensor exercise protocols to failure and a work matched control exercise protocol. Participants were scanned after each exercise protocol; 70% 1 repetition maximum (RM) (FF70); 20% 1RM (FF20); 20% 1RM with blood flow restriction (BFR20); free-flow (FF) control work matched to BFR20 (FF20WM). Post exercise mfMRI scans were used to obtain interleaved measures of muscle R2 (indicator of edema), R2' (indicator of deoxyhemoglobin), muscle cross sectional area (CSA) blood flow, and diffusion. Both BFR20 and FF20 exercise resulted in a larger acute decrease in R2, decrease in R2', and expansion of the extracellular compartment with slower rates of recovery. BFR20 caused greater acute increases in muscle CSA than FF20WM and FF70. Only BFR20 caused acute increases in intracellular volume. Postexercise muscle blood flow was higher after FF70 and FF20 exercise than BFR20. Acute changes in mean diffusivity were similar across all exercise protocols. This study was able to differentiate the acute physiological responses between anabolic exercise protocols. Low-load exercise protocols, known to have relatively higher energy contributions from glycolysis at task failure, elicited a higher mfMRI response. Noninvasive mfMRI represents a promising tool for decoding mechanisms of anabolic adaptation in muscle.NEW & NOTEWORTHY Using muscle functional MRI (mfMRI), this study was able to differentiate the acute physiological responses following three established hypertrophic resistance exercise strategies. Low-load exercise protocols performed to failure, with or without blood flow restriction, resulted in larger changes in R2 (i.e. greater T2-shifts) with a slow rate of return to baseline indicative of myocellular fluid shifts. These data were cross evaluated with interleaved measures of macrovascular blood flow, water diffusion, muscle cross sectional area (i.e. acute macroscopic muscle swelling), and intracellular water fraction measured using MRI.


Subject(s)
Resistance Training , Cross-Over Studies , Fluid Shifts , Humans , Muscle Strength , Muscle, Skeletal , Regional Blood Flow
16.
Neuroimage ; 233: 117950, 2021 06.
Article in English | MEDLINE | ID: mdl-33716159

ABSTRACT

In present study we aimed to validate the use of image-derived input functions (IDIF) in the kinetic modeling of cerebral blood flow (CBF) measured by [15O]H2O PET by comparing with the accepted reference standard arterial input function (AIF). Additional comparisons were made to mean cohort AIF and CBF values acquired by methodologically independent phase-contrast mapping (PCM) MRI. Using hybrid PET/MRI an IDIF was generated by measuring the radiotracer concentration in the internal carotid arteries and correcting for partial volume effects using the intravascular volume measured from MRI-angiograms. Seven patients with carotid steno-occlusive disease and twelve healthy controls were examined at rest, after administration of acetazolamide, and, in the control group, during hyperventilation. Agreement between the techniques was examined by linear regression and Bland-Altman analysis. Global CBF values modeled using IDIF correlated with values from AIF across perfusion states in both patients (p<10-6, R2=0.82, 95% limits of agreement (LoA)=[-11.3-9.9] ml/100 g/min) and controls (p<10-6, R2=0.87, 95% LoA=[-17.1-13.7] ml/100 g/min). The reproducibility of gCBF using IDIF was identical to AIF (15.8%). Values from IDIF and AIF had equally good correlation to measurements by PCM MRI, R2=0.86 and R2=0.84, (p<10-6), respectively. Mean cohort AIF performed substantially worse than individual IDIFs (p<10-6, R2=0.63, LoA=[-12.8-25.3] ml/100 g/min). In the patient group, use of IDIF provided similar reactivity maps compared to AIF. In conclusion, global CBF values modeled using IDIF correlated with values modeled by AIF and similar perfusion deficits could be established in a patient group.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Models, Neurological , Positron-Emission Tomography/standards , Adult , Aged , Aged, 80 and over , Brain/blood supply , Carotid Stenosis/diagnostic imaging , Carotid Stenosis/metabolism , Cerebrovascular Circulation/physiology , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Oxygen Radioisotopes/metabolism , Positron-Emission Tomography/methods , Reproducibility of Results , Water/metabolism , Young Adult
17.
Pain ; 162(1): 176-183, 2021 01.
Article in English | MEDLINE | ID: mdl-32701652

ABSTRACT

The middle meningeal artery is a proposed surrogate marker for activation of trigeminal nociceptors during migraine. Previous studies focused on the extracranial part of the artery; hence, vasoreactivity in the intradural arteries during migraine is unknown. Thirty-four patients with migraine without aura were given sildenafil on one day and calcitonin gene-related peptide on another in double-blind crossover fashion. Patients were scanned with 3.0 T MR angiography before drug administration and again 6 hours later during induced attacks of migraine. We measured circumference of the intradural segment of the middle meningeal artery before and during induced migraine attacks. The middle cerebral and superficial temporal arteries were also examined. Fourteen patients had attacks during the second scan after both study drugs and 11 had a migraine after either one or the other, resulting in a total of 39 attacks included in the final analysis. Mean circumference of the intradural middle meningeal artery at baseline was 3.18 mm with an increase of 0.11 mm during attacks (P = 0.005), corresponding to a relative dilation of 3.6% [95% CI: 1.4%-5.7%]. Middle cerebral artery dilated by 9.4% [95% CI: 7.1%-11.7%] and superficial temporal artery by 2.3% [95% CI: 0.2%-4.4%]. Our study shows that the intradural middle meningeal artery and the middle cerebral artery are dilated during migraine induced by calcitonin gene-related peptide as well as sildenafil. We propose that intradural vasculature is affected by migraine-driven activation of trigeminal afferents during migraine attacks.


Subject(s)
Migraine Disorders , Calcitonin Gene-Related Peptide , Dilatation , Humans , Meningeal Arteries/diagnostic imaging , Migraine Disorders/chemically induced , Migraine Disorders/diagnostic imaging , Sildenafil Citrate
18.
Front Neurosci ; 14: 559314, 2020.
Article in English | MEDLINE | ID: mdl-33192247

ABSTRACT

Glutamate detection in pons and thalamus using proton magnetic resonance spectroscopy (1H-MRS) after an intervention is of interest for studying various brain disorders. However, 1H-MRS in these brain regions is challenging and time-consuming, especially in longitudinal study designs. 1H-MRS of more cortical structures at the ultrahigh magnetic field strength of 7T yields an improved spectral output, including separation of the glutamate signal from the glutamine signal, in a shorter and more feasible scan time, as compared to conventional clinical field strengths. For this purpose, we compared the feasibility of 1H-MRS at 3T and 7T in pons and thalamus by applying a longitudinal study design of repeated measures on same day and three separate days at both field strength in five healthy participants. Total 1H-MRS acquisition time was reduced by a factor 3.75 for pons and by a factor 3 for thalamus at 7T as compared to 3T. We found higher spectral signal-to-noise ratio (SNR) (p < 0.001), lower linewidth (p = 0.001) and lower Cramér-Rao lower bounds (CRLB) (p < 0.001) for the combined glutamate and glutamine signal (Glx) in thalamus at 7T as compared to 3T. In pons, CRLB of Glx and SNR were lower at 7T (p = 0.002 and p = 0.006), with no differences in linewidth compared to 3T. Mean within-subject variability of Glx concentration estimates was lower at 7T compared to 3T for both pons and thalamus. At 7T, it was possible to assess glutamate and γ-aminobutyric acid (GABA) simultaneously in pons and thalamus. In conclusion, 1H-MRS at 7T resulted in improved spectral quality while allowing shorter scan times than at 3T as well as estimation of the pure glutamate signal in pons and thalamus. This opens up the opportunity for multimodal study designs and multiregional subcortical 1H-MRS research. Glutamate and GABA measurement at 7T in pons and thalamus is advantageous for future investigations of excitatory-inhibitory mechanisms in brain disorders.

19.
J Appl Physiol (1985) ; 129(4): 748-759, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32853108

ABSTRACT

Important physiological quantities for investigating muscle hypertrophy include blood oxygenation, cell swelling, and changes in blood flow. The purpose of this study was to compare the acute changes of these parameters in human skeletal muscle induced by low-load (20% 1-RM) blood flow-restricted (BFR-20) knee extensor exercise compared with free-flow work-matched (FF-20WM) and free-flow 50% 1-RM (FF-50) knee extensor exercise using multimodal magnetic resonance imaging (MRI). Subjects (n = 11) completed acute exercise sessions for each exercise mode in an MRI scanner, where interleaved measures of muscle R2 (indicator of edema), [Formula: see text] (indicator of deoxyhemoglobin), macrovascular blood flow, and diffusion were performed before, between sets, and after the final set for each exercise protocol. BFR-20 exercise resulted in larger acute decreases in R2 and greater increases in cross-sectional area than FF-20WM and FF-50 (P < 0.01). Blood oxygenation decreased between sets during BFR-20, as indicated by a 13.6% increase in [Formula: see text] values (P < 0.01)), whereas they remained unchanged for FF-20WM and decreased during FF-50 exercise. Quadriceps blood flow between sets was highest for the heavier load (FF-50), averaging 305 mL/min, and lowest for BFR-20 at 123 ± 73 mL/min until post-exercise cuff release, where blood flow rates in BFR-20 exceeded both FF protocols (P < 0.01). Acute changes in diffusion rates were similar for all exercise protocols. This study was able to differentiate the acute exercise response of selected physiological factors associated with skeletal muscle hypertrophy. Marked differences in these parameters were found to exist between BFR and FF exercise conditions, which contribute to explain the anabolic potential of low-load blood flow restricted muscle exercise.NEW & NOTEWORTHY Acute changes in blood flow, diffusion, blood oxygenation, cross-sectional area, and the "T2 shift" are evaluated in human skeletal muscle in response to blood flow-restricted (BFR) and conventional free-flow knee extensor exercise performed in an MRI scanner. The acute physiological response to exercise was dependent on the magnitude of load and the application of BFR. Physiological variables changed markedly and established a steady state rapidly after the first of four exercise sets.


Subject(s)
Resistance Training , Exercise , Humans , Magnetic Resonance Imaging , Muscle Strength , Muscle, Skeletal , Regional Blood Flow
20.
Front Pharmacol ; 11: 591, 2020.
Article in English | MEDLINE | ID: mdl-32425802

ABSTRACT

BACKGROUND: All current approved antipsychotic drugs against schizophrenia spectrum disorders share affinity for the dopamine receptor (D2R). However, up to one-third of these patients respond insufficiently, and in some cases, side-effects outweigh symptom reduction. Previous data have suggested that a subgroup of antipsychotic-naïve patients will respond to serotonin 2A receptor (2AR) blockade. AIMS: This investigator-initiated, translational, proof-of-concept study has overall two aims; 1) To test the clinical effectiveness of monotherapy with the newly approved drug against Parkinson's disease psychosis, pimavanserin, in antipsychotic-free patients with first-episode schizophrenia spectrum disorders; 2) To characterize the neurobiological profile of responders to pimavaserin. MATERIALS AND EQUIPMENT: Forty patients will be enrolled in this 6-week open label, one-armed trial with the selective serotonin 2AR antagonist (pimavanserin 34 mg/day). At baseline, patients will undergo: positron emission tomography (PET) imaging of the serotonin 2AR using the radioligand [¹¹C]Cimbi-36; structural magnetic resonance imaging (MRI); MR spectroscopy of cerebral glutamate levels and diffusion tensor imaging; cognitive and psychopathological examinations; electrocardiogram, and blood sampling for genetic- and metabolic analyses. OUTCOME MEASURES: The primary clinical endpoint will be reduction in the Positive and Negative Syndrome Scale (PANSS) positive score. Secondary clinical endpoints comprise multiple clinical ratings (positive and negative symptoms, depressive-, obsessive-compulsive symptoms, quality of life, social functioning, sexual functioning, and side-effects). PET, MRI, and cognitive parameters will be used for in-depth neuropsychiatric characterization of pimavanserin response. ANTICIPATED RESULTS: Clinically, we expect pimavanserin to reduce psychotic symptoms with similar effect as observed with conventional antipsychotics, for which we have comparable historical data. We expect pimavanserin to induce minimal side-effects. Neurobiologically, we expect psychotic symptom reduction to be most prominent in patients with low frontal serotonin 2AR binding potential at baseline. Potential pro-cognitive and brain structural effects of pimavanserin will be explored. PERSPECTIVES: Sub-Sero will provide unique information about the role serotonin 2AR in antipsychotic-free, first-episode psychosis. If successful, Sub-Sero will aid identification of a "serotonergic subtype" of schizophrenia spectrum patients, thereby promoting development of precision medicine in clinical psychiatry. CLINICAL TRIAL REGISTRATION: ClinicalTrials, identifier NCT03994965.

SELECTION OF CITATIONS
SEARCH DETAIL
...