Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 13(12): e15098, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34725927

ABSTRACT

Alzheimer's disease (AD) is characterised by a long preclinical phase. Although phosphorylated tau (p-tau) species such as p-tau217 and p-tau231 provide accurate detection of early pathological changes, other biomarkers capable of staging disease progression during preclinical AD are still needed. Combining exploratory and targeted mass spectrometry methods in neuropathologically confirmed brain tissue, we observed that p-tau235 is a prominent feature of AD pathology. In addition, p-tau235 seemed to be preceded by p-tau231, in what appeared to be a sequential phosphorylation event. To exploit its biomarker potential in cerebrospinal fluid (CSF), we developed and validated a new p-tau235 Simoa assay. Using three clinical cohorts, we demonstrated that (i) CSF p-235 increases early in AD continuum, and (ii) changes in CSF p-tau235 and p-tau231 levels during preclinical AD are consistent with the sequential phosphorylation evidence in AD brain. In conclusion, CSF p-tau235 appears to be not only a highly specific biomarker of AD but also a promising staging biomarker for the preclinical phase. Thus, it could prove useful tracking disease progression and help enriching clinical trial recruitment.


Subject(s)
Alzheimer Disease , Alzheimer Disease/pathology , Amyloid beta-Peptides , Biomarkers/cerebrospinal fluid , Disease Progression , Humans , Phosphorylation , tau Proteins/cerebrospinal fluid
2.
F1000Res ; 6: 1604, 2017.
Article in English | MEDLINE | ID: mdl-28928962

ABSTRACT

Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are relentlessly progressive neurodegenerative disorders that are likely to represent two ends of a disease spectrum. It is well established that both are characterised pathologically by widespread cortical Lewy body deposition. However, until recently, the pathophysiological mechanisms leading to neuronal damage were not known. It was also not understood why some cells are particularly vulnerable in PDD/DLB, nor why some individuals show more aggressive and rapid dementia than others. Recent studies using animal and cell models as well as human post-mortem analyses have provided important insights into these questions. Here, we review recent developments in the pathophysiology in PDD/DLB. Specifically, we examine the role of pathological proteins other than α-synuclein, consider particular morphological and physiological features that confer vulnerabilities on some neurons rather than others, and finally examine genetic factors that may explain some of the heterogeneity between individuals with PDD/DLB.

SELECTION OF CITATIONS
SEARCH DETAIL
...