Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 12(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38543901

ABSTRACT

Group B coxsackieviruses (CVBs) cause a wide range of diseases in humans, but no vaccines are currently available to prevent these infections. Previously, we had demonstrated that a live attenuated CVB3 vaccine virus, Mutant 10 (Mt10), offers protection against multiple CVB serotypes as evaluated in various inbred mouse strains; however, the applicability of these findings to the outbred human population remains uncertain. To address this issue, we used Diversity Outbred (DO) mice, whose genome is derived from eight inbred mouse strains that may capture the level of genetic diversity of the outbred human population. To determine the efficacy of the Mt10 vaccine, we established the CVB3 infection model in the DO mice. We noted that CVB3 infection resulted mainly in pancreatitis, although viral RNA was detected in both the pancreas and heart. Histologically, the pancreatic lesions comprised of necrosis, post-necrotic atrophy, and lymphocyte infiltration. In evaluating the efficacy of the Mt10 vaccine, both male and female DO mice were completely protected in challenge studies with CVB3, and viral RNA was not detected in the heart or pancreas. Likewise, vaccine recipients of both sexes showed significant levels of virus-neutralizing antibodies. Furthermore, by using the CVB3 viral protein 1, virus-reactive antibodies were found to be diverse in the order of IgG2c, followed by IgG2a, IgG2b/IgG3, and IgG1. Together, the data suggest that the Mt10 vaccine virus can offer protection against CVB infections that may have translational significance.

2.
Vaccine ; 42(9): 2117-2121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38458874

ABSTRACT

A new highly mutated Omicron subvariant BA.2.87.1 has recently been identified with over 30 amino acid mutations in the Spike protein compared with BA.2, BA.5, XBB.1.5, and JN.1 variants. Mutiple mutations in BA.2.87.1 are located in the N-terminal domain (NTD) rather than in the receptor binding domain (RBD) of the Spike protein. We evaluated neutralizing antibody (NAb) responses to BA.2.87.1 because of its highly mutated sequence and its unique NTD region. Our data show that NAb responses to BA.2.87.1 were lower than to BA.2 but higher than to JN.1, suggesting that BA.2.87.1 is not a further antibody escape variant compared with other currently circulating variants. Moreover, XBB.1.5 mRNA boosting increased NAb titers to all variants tested including BA.2.87.1.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acids , Antibodies, Neutralizing , Antibodies, Viral
3.
Cells ; 13(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38334626

ABSTRACT

Myocarditis is one of the major causes of heart failure in children and young adults and can lead to dilated cardiomyopathy. Lymphocytic myocarditis could result from autoreactive CD4+ and CD8+ T cells, but defining antigen specificity in disease pathogenesis is challenging. To address this issue, we generated T cell receptor (TCR) transgenic (Tg) C57BL/6J mice specific to cardiac myosin heavy chain (Myhc)-α 334-352 and found that Myhc-α-specific TCRs were expressed in both CD4+ and CD8+ T cells. To investigate if the phenotype is more pronounced in a myocarditis-susceptible genetic background, we backcrossed with A/J mice. At the fourth generation of backcrossing, we observed that Tg T cells from naïve mice responded to Myhc-α 334-352, as evaluated by proliferation assay and carboxyfluorescein succinimidyl ester staining. The T cell responses included significant production of mainly pro-inflammatory cytokines, namely interferon (IFN)-γ, interleukin-17, and granulocyte macrophage-colony stimulating factor. While the naïve Tg mice had isolated myocardial lesions, immunization with Myhc-α 334-352 led to mild myocarditis, suggesting that further backcrossing to increase the percentage of A/J genome close to 99.99% might show a more severe disease phenotype. Further investigations led us to note that CD4+ T cells displayed the phenotype of cytotoxic T cells (CTLs) akin to those of conventional CD8+ CTLs, as determined by the expression of CD107a, IFN-γ, granzyme B natural killer cell receptor (NKG)2A, NKG2D, cytotoxic and regulatory T cell molecules, and eomesodermin. Taken together, the transgenic system described in this report may be a helpful tool to distinguish the roles of cytotoxic cardiac antigen-specific CD4+ T cells vs. those of CD8+ T cells in the pathogenesis of myocarditis.


Subject(s)
Autoimmunity , Myocarditis , Animals , Humans , Mice , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes/pathology , Mice, Inbred C57BL , Mice, Transgenic , Myosin Heavy Chains/genetics , Receptors, Antigen, T-Cell , T-Lymphocytes, Cytotoxic
4.
Sci Adv ; 10(8): eadj9945, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394195

ABSTRACT

Messenger RNA (mRNA) vaccines were highly effective against the ancestral SARS-CoV-2 strain, but the efficacy of bivalent mRNA boosters against XBB variants was substantially lower. Here, we show limited durability of neutralizing antibody (NAb) responses against XBB variants and isotype switching to immunoglobulin G4 (IgG4) responses following bivalent mRNA boosting. Bivalent mRNA boosting elicited modest XBB.1-, XBB.1.5-, and XBB.1.16-specific NAbs that waned rapidly within 3 months. In contrast, bivalent mRNA boosting induced more robust and sustained NAbs against the ancestral WA1/2020 strain, suggesting immune imprinting. Following bivalent mRNA boosting, serum antibody responses were primarily IgG2 and IgG4 responses with poor Fc functional activity. In contrast, a third monovalent mRNA immunization boosted all isotypes including IgG1 and IgG3 with robust Fc functional activity. These data show substantial immune imprinting for the ancestral spike and isotype switching to IgG4 responses following bivalent mRNA boosting, with important implications for future booster designs and boosting strategies.


Subject(s)
Antibody Formation , Immunoglobulin G , Antibodies, Neutralizing , Immunization , RNA, Messenger/genetics , mRNA Vaccines
5.
Vaccine ; 41(47): 6904-6909, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37872011

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variant BA.2.86 has over 30 mutations in spike compared with BA.2 and XBB.1.5, which raised the possibility that BA.2.86 might evade neutralizing antibodies (NAbs) induced by vaccination or infection. In this study, we show that NAb titers are substantially lower to BA.2.86 compared with BA.2 but are similar or slightly higher than to other current circulating variants, including XBB.1.5, EG.5.1, and FL.1.5.1. Moreover, NAb titers against all these variants were higher in vaccinated individuals with a history of XBB.1.5 infection compared with vaccinated individuals with no history of XBB.1.5 infection, suggesting the potential utility of the monovalent XBB.1.5 mRNA boosters.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Antibodies, Neutralizing , Immunization, Secondary , Antibodies, Viral
6.
Cells ; 12(19)2023 09 25.
Article in English | MEDLINE | ID: mdl-37830560

ABSTRACT

Myocarditis is a predominant cause of congestive heart failure and sudden death in children and young adolescents that can lead to dilated cardiomyopathy. Lymphocytic myocarditis mediated by T cells can result from the recognition of cardiac antigens that may involve CD4 or CD8 T cells or both. In this report, we describe the generation of T cell receptor (TCR) transgenic mice on a C57BL/6 genetic background specific to cardiac myosin heavy chain (Myhc)-α 334-352 and make the following observations: First, we verified that Myhc-α 334-352 was immunogenic in wild-type C57BL/6 mice and induced antigen-specific CD4 T cell responses despite being a poor binder of IAb; however, the immunized animals developed only mild myocarditis. Second, TCRs specific to Myhc-α 334-352 in transgenic mice were expressed in both CD4 and CD8 T cells, suggesting that the expression of epitope-specific TCR is common to both cell types. Third, although T cells from naïve transgenic mice did not respond to Myhc-α 334-352, both CD4 and CD8 T cells from animals immunized with Myhc-α 334-352 responded to the peptide, indicating that antigen priming is necessary to break tolerance. Fourth, although the transgenic T cells could produce significant amounts of interferon-γ and interleukin-17, the immunized animals developed only mild disease, indicating that other soluble factors might be necessary for developing severe myocarditis. Alternatively, the C57BL/6 genetic background might be a major contributing factor for resistance to the development of myocarditis. Taken together, our model permits the determination of the roles of both CD4 and CD8 T cells to understand the disease-resistance mechanisms of myocarditis in a single transgenic system antigen-specifically.


Subject(s)
Myocarditis , Humans , Mice , Animals , Child , Adolescent , Myocarditis/genetics , Mice, Transgenic , Myosin Heavy Chains/genetics , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes , Receptors, Antigen, T-Cell
7.
J Infect Dis ; 228(10): 1311-1313, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37592872

ABSTRACT

Three and a half years into the coronavirus disease 2019 (COVID-19) pandemic, the nature and durability of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still remains unclear. Current COVID-19 mRNA vaccines have been shown to provide minimal protection against infection with XBB variants but substantial protection against severe disease. However, such protection appears to wane quickly. In contrast, protection from the combination of both vaccination and infection, termed "hybrid immunity", has been shown to be greater in magnitude and durability than that provided by either vaccine immunity or natural immunity alone.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Immunity, Innate , Vaccination , Adaptive Immunity , Antibodies, Neutralizing , Antibodies, Viral
8.
Vaccines (Basel) ; 11(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36851152

ABSTRACT

The group B coxsackieviruses (CVBs) exist in six serotypes (CVB1 to CVB6). Disease associations have been reported for most serotypes, and multiple serotypes can cause similar diseases. For example, CVB1, CVB3, and CVB5 are generally implicated in the causation of myocarditis, whereas CVB1 and CVB4 could accelerate the development of type 1 diabetes (T1D). Yet, no vaccines against these viruses are currently available. In this review, we have analyzed the attributes of experimentally tested vaccines and discussed their merits and demerits or limitations, as well as their impact in preventing infections, most importantly myocarditis and T1D.

9.
bioRxiv ; 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36747640

ABSTRACT

The SARS-CoV-2 Omicron variant has continued to evolve. XBB is a recombinant between two BA.2 sublineages, XBB.1 includes the G252V mutation, and XBB.1.5 includes the G252V and F486P mutations. XBB.1.5 has rapidly increased in frequency and has become the dominant virus in New England. The bivalent mRNA vaccine boosters have been shown to increase neutralizing antibody (NAb) titers to multiple variants, but the durability of these responses remains to be determined. We assessed humoral and cellular immune responses in 30 participants who received the bivalent mRNA boosters and performed assays at baseline prior to boosting, at week 3 after boosting, and at month 3 after boosting. Our data demonstrate that XBB.1.5 substantially escapes NAb responses but not T cell responses after bivalent mRNA boosting. NAb titers to XBB.1 and XBB.1.5 were similar, suggesting that the F486P mutation confers greater transmissibility but not increased immune escape. By month 3, NAb titers to XBB.1 and XBB.1.5 declined essentially to baseline levels prior to boosting, while NAb titers to other variants declined less strikingly.

11.
Cell Rep ; 41(6): 111611, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36351411

ABSTRACT

Immune checkpoint inhibitors (ICIs) are an effective therapy for various cancers; however, they can induce immune-related adverse events (irAEs) as a side effect. Myocarditis is an uncommon, but fatal, irAE caused after ICI treatments. Currently, the mechanism of ICI-associated myocarditis is unclear. Here, we show the development of myocarditis in A/J mice induced by anti-PD-1 monoclonal antibody (mAb) administration alone without tumor cell inoculation, immunization, or viral infection. Mice with myocarditis have increased cardiac infiltration, elevated cardiac troponin levels, and arrhythmia. Anti-PD-1 mAb treatment also causes irAEs in other organs. Autoimmune T cells recognizing cardiac myosin are activated and increased in mice with myocarditis. Notably, cardiac myosin-specific T cells are present in naive mice, showing a phenotype of antigen-experienced T cells. Collectively, we establish a clinically relevant mouse model for ICI-associated myocarditis and find a contribution of cardiac myosin-specific T cells to ICI-associated myocarditis development and pathogenesis.


Subject(s)
Antineoplastic Agents, Immunological , Myocarditis , Animals , Mice , Antibodies, Monoclonal , Cardiac Myosins , Immune Checkpoint Inhibitors , Myocarditis/chemically induced , Myocarditis/pathology , T-Lymphocytes/pathology , Autoimmunity
12.
Biology (Basel) ; 11(7)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-36101433

ABSTRACT

Enteroviruses such as group B coxsackieviruses (CVB) are commonly suspected as causes of myocarditis that can lead to dilated cardiomyopathy (DCM), and the mouse model of CVB3 myocarditis is routinely used to understand DCM pathogenesis. Mechanistically, autoimmunity is suspected due to the presence of autoantibodies for select antigens. However, their role continues to be enigmatic, which also raises the question of whether the breadth of autoantibodies is sufficiently characterized. Here, we attempted to comprehensively analyze the autoantibody repertoire using Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a versatile and high-throughput platform, in the mouse model of CVB3 myocarditis. First, PhIP-Seq analysis using the VirScan library revealed antibody reactivity only to CVB3 in the infected group but not in controls, thus validating the technique in this model. Second, using the mouse peptide library, we detected autoantibodies to 32 peptides from 25 proteins in infected animals that are ubiquitously expressed and have not been previously reported. Third, by using ELISA as a secondary assay, we confirmed antibody reactivity in sera from CVB3-infected animals to cytochrome c oxidase assembly factor 4 homolog (COA4) and phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), indicating the specificity of antibody detection by PhIP-Seq technology. Fourth, we noted similar antibody reactivity patterns in CVB3 and CVB4 infections, suggesting that the COA4- and PIK3AP1-reactive antibodies could be common to multiple CVB infections. The specificity of the autoantibodies was affirmed with influenza-infected animals that showed no reactivity to any of the antigens tested. Taken together, our data suggest that the autoantibodies identified by PhIP-Seq may have relevance to CVB pathogenesis, with a possibility that similar reactivity could be expected in human DCM patients.

13.
iScience ; 25(3): 103865, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35243228

ABSTRACT

Coxsackievirus B3 (CVB3)-induced myocarditis is commonly employed to study viral pathogenesis in mice. Chronically affected mice may develop dilated cardiomyopathy, which may involve the mediation of immune and nonimmune cells. To dissect this complexity, we performed single-cell RNA sequencing on heart cells from healthy and myocarditic mice, leading us to note significant proportions of myeloid cells, T cells, and fibroblasts. Although the transcriptomes of myeloid cells were mainly of M2 phenotype, the Th17 cells, CTLs, and Treg cells had signatures critical for cytotoxic functions. Fibroblasts were heterogeneous expressing genes important in fibrosis and regulation of inflammation and immune responses. The intercellular communication networks revealed unique interactions and signaling pathways in the cardiac cellulome, whereas myeloid cells and T cells had upregulated unique transcription factors modulating cardiac remodeling functions. Together, our data suggest that M2 cells, T cells, and fibroblasts may cooperatively or independently participate in the pathogenesis of viral myocarditis.

14.
Vaccines (Basel) ; 11(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36679922

ABSTRACT

Enteroviruses, which include Coxsackieviruses, are a common cause of virus infections in humans, and multiple serotypes of the group B Coxsackievirus (CVB) can induce similar diseases. No vaccines are currently available to prevent CVB infections because developing serotype-specific vaccines is not practical. Thus, developing a vaccine that induces protective immune responses for multiple serotypes is desired. In that direction, we created a live-attenuated CVB3 vaccine virus, designated mutant (Mt)10, that offers protection against myocarditis and pancreatitis induced by CVB3 and CVB4 in disease-susceptible A/J mice. Here, we report that the Mt10 vaccine protected against CVB4-triggered type 1 diabetes (T1D) in non-obese diabetic (NOD) mice but the expected subsequent development of spontaneous T1D in these genetically predisposed NOD mice was not altered. We noted that Mt10 vaccine induced significant amounts of neutralizing antibodies, predominantly of the IgG2c isotype, and the virus was not detected in vaccine-challenged animals. Furthermore, monitoring blood glucose levels-and to a lesser extent, insulin antibodies-was found to be helpful in predicting vaccine responses. Taken together, our data suggest that the monovalent Mt10 vaccine has the potential to prevent infections caused by multiple CVB serotypes, as we have demonstrated in various pre-clinical models.

15.
Microorganisms ; 9(11)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34835449

ABSTRACT

Group B coxsackieviruses (CVB) containing six serotypes, B1-B6, affect various organs, and multiple serotypes can induce similar diseases such as myocarditis and pancreatitis. Yet, no vaccines are currently available to prevent these infections. Translationally, the derivation of vaccines that offer protection against multiple serotypes is highly desired. In that direction, we recently reported the generation of an attenuated strain of CVB3, termed Mt10, which completely protects against both myocarditis and pancreatitis induced by the homologous wild-type CVB3 strain. Here, we report that the Mt10 vaccine can induce cross-protection against multiple CVB serotypes as demonstrated with CVB4. We note that the Mt10 vaccine could induce cross-reactive neutralizing antibodies (nABs) against both CVB1 and CVB4. In challenge studies with CVB4, the efficacy of the Mt10 vaccine was found to be 92%, as determined by histological evaluation of the heart and pancreas. Antibody responses induced in Mt10/CVB4 challenged animals indicated the persistence of cross-reactive nABs against CVB1, CVB3, and CVB4. Evaluation of antigen-specific immune responses revealed viral protein 1 (VP1)-reactive antibodies, predominantly IgG2a, IgG2b, IgG3, and IgG1. Similarly, by using major histocompatibility complex class II tetramers, we noted induction of VP1-specific CD4 T cells capable of producing multiple T cell cytokines, with interferon-γ being predominant. Finally, none of the vaccine recipients challenged with CVB4 revealed the presence of viral nucleic acid in the heart or pancreas. Taken together, our data suggest that the Mt10 vaccine can prevent infections caused by multiple CVB serotypes, paving the way for the development of monovalent CVB vaccines to prevent heart and pancreatic diseases of enteroviral origin.

16.
J Immunol ; 207(9): 2205-2215, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34663593

ABSTRACT

The discovery of IL-10 more than 30 years ago marked the beginning of our understanding of how cytokines regulate immune responses, based on cross-regulation between Th1 and Th2 cytokines. Although multiple cell types were shown to produce IL-10, its identity as a Th2 cytokine remained strong because it was rigidly associated with Th2 clones in mice, whereas both Th1 and Th2 clones could secrete IL-10 in humans. However, as new Th1/Th2 cell functionalities emerged, anti-inflammatory action of IL-10 gained more attention than its inhibitory effect on Th1 cells, which may occur as an indirect consequence of suppression of APCs. This notion is also supported by the discovery of regulatory T cells, whose suppressor functions involve the mediation of IL-10, among other molecules. From this perspective, we discuss the functionalities of IL-10 by highlighting important differences between mice and humans with an emphasis on the Th1 and Th2 paradigm.


Subject(s)
Interleukin-10/metabolism , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Animals , Disease Models, Animal , Humans , Immune Tolerance , Mice , Th1-Th2 Balance
17.
Sci Rep ; 11(1): 12432, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34127684

ABSTRACT

Coxsackievirus B3 (CVB3), is commonly implicated in myocarditis, which can lead to dilated cardiomyopathy, in addition to causing acute pancreatitis and meningitis. Yet, no vaccines are currently available to prevent this infection. Here, we describe the derivation of a live attenuated vaccine virus, termed mutant (Mt) 10, encoding a single amino acid substitution H790A within the viral protein 1, that prevents CVB3 infection in mice and protects from both myocarditis and pancreatitis in challenge studies. We noted that animals vaccinated with Mt 10 developed virus-neutralizing antibodies, predominantly containing IgG2a and IgG2b, and to a lesser extent IgG3 and IgG1. Furthermore, by using major histocompatibility complex class II dextramers and tetramers, we demonstrated that Mt 10 induces antigen-specific T cell responses that preferentially produce interferon-γ. Finally, neither vaccine recipients nor those challenged with the wild-type virus revealed evidence of autoimmunity or cardiac injury as determined by T cell response to cardiac myosin and measurement of circulating cardiac troponin I levels, respectively. Together, our data suggest that Mt 10 is a vaccine candidate that prevents CVB3 infection through the induction of neutralizing antibodies and antigen-specific T cell responses, the two critical components needed for complete protection against virus infections in vaccine studies.


Subject(s)
Coxsackievirus Infections/prevention & control , Enterovirus B, Human/immunology , Myocarditis/prevention & control , Pancreatitis/prevention & control , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Binding Sites/genetics , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Coxsackievirus Infections/virology , Disease Models, Animal , Enterovirus B, Human/genetics , Female , Humans , Immunogenicity, Vaccine/genetics , Male , Mice , Mutation , Myocarditis/virology , Pancreatitis/virology , T-Lymphocytes/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
18.
Biol Sex Differ ; 11(1): 50, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32894183

ABSTRACT

Sex-related differences in the occurrence of autoimmune diseases is well documented, with females showing a greater propensity to develop these diseases than their male counterparts. Sex hormones, namely dihydrotestosterone and estrogens, have been shown to ameliorate the severity of inflammatory diseases. Immunologically, the beneficial effects of sex hormones have been ascribed to the suppression of effector lymphocyte responses accompanied by immune deviation from pro-inflammatory to anti-inflammatory cytokine production. In this review, we present our view of the mechanisms of sex hormones that contribute to their ability to suppress autoimmune responses with an emphasis on the pathogenesis of experimental autoimmune encephalomyelitis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Gonadal Steroid Hormones , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Male , Sex Factors , Virus Diseases/immunology
19.
Vaccines (Basel) ; 8(3)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645845

ABSTRACT

Group B coxsackieviruses (CVBs) belonging to the genus, Enterovirus and contain six serotypes that induce various diseases, whose occurrence may involve the mediation of more than one serotype. We recently identified immunogenic epitopes within coxsackieviruses B3 (CVB3) viral protein 1 that induce anti-viral T cell responses in mouse models of CVB infections. In our investigations to determine the protective responses of the viral epitopes, we unexpectedly noted that animals immunized with complete Freund's adjuvant (CFA) alone and later challenged with CVB3 were completely protected against myocarditis. Similarly, the pancreatitis-inducing ability of CVB3 was remarkably reduced to only 10% in the CFA group as opposed to 73.3% in the control group that received no CFA. Additionally, no mortalities were noted in the CFA group, whereas 40% of control animals died during the course of 21 days post-infection with CVB3. Taken together, our data suggest that the adjuvant effects of CFA may be sufficient for protection against CVB infections. These observations may provide new insights into our understanding of the occurrence of viral infections.

20.
Rev Med Virol ; 30(6): 1-14, 2020 11.
Article in English | MEDLINE | ID: mdl-32720461

ABSTRACT

Viral myocarditis has been identified as a major cause of dilated cardiomyopathy (DCM) that can lead to heart failure. Historically, Coxsackieviruses and adenoviruses have been commonly suspected in myocarditis/DCM patients in North America and Europe. However, this notion is changing as other viruses such as Parvovirus B19 and human herpesvirus-6 are increasingly reported as causes of myocarditis in the United States, with the most recent example being the severe acute respiratory syndrome coronavirus 2, causing the Coronavirus Disease-19. The mouse model of Coxsackievirus B3 (CVB3)-induced myocarditis, which may involve mediation of autoimmunity, is routinely used in the study of immune pathogenesis of viral infections as triggers of DCM. In this review, we discuss the immune mechanisms underlying the development of viral myocarditis with an emphasis on autoimmunity in the development of post-infectious myocarditis induced with CVB3.


Subject(s)
Disease Susceptibility/immunology , Host-Pathogen Interactions/immunology , Myocarditis/immunology , Myocarditis/virology , Adaptive Immunity , Animals , Autoimmunity , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Immunity, Innate , Inflammation Mediators/metabolism , Mice , Myocarditis/pathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...