Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
Mol Metab ; : 101959, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763496

ABSTRACT

OBJECTIVES: Aggregation and misfolding of amyloid beta (Aß) and tau proteins, suggested to arise from post-translational modification processes, are thought to be the main cause of Alzheimer's disease (AD). Additionally, a plethora of evidence exists that links metabolic dysfunctions such as obesity, type 2 diabetes (T2D), and dyslipidemia to the pathogenesis of AD. We thus investigated the combinatory effect of T2D and human glutaminyl cyclase activity (pyroglutamylation), on the pathology of AD and whether astaxanthin (ASX) treatment ameliorates accompanying pathophysiological manifestations. METHODS: Male transgenic AD mice, APPxhQC, expressing human APP751 with the Swedish and the London mutation and human glutaminyl cyclase (hQC) enzyme and their non-transgenic (NTG) littermates were used. Both APPxhQC and NTG mice were allocated to 3 groups, control, T2D-control, and T2D-ASX. Mice were fed control or high fat diet ± ASX for 13 weeks starting at an age of 11-12 months. High fat diet fed mice were further treated with streptozocin for T2D induction. Effects of genotype, T2D induction, and ASX treatment were evaluated by analysing glycemic readouts, lipid concentration, Aß deposition, hippocampus-dependent cognitive function and nutrient sensing using immunosorbent assay, ELISA-based assays, western blotting, immunofluorescence staining, and behavioral testing via Morris water maze (MWM), respectively. RESULTS: APPxhQC mice presented a higher glucose sensitivity compared to NTG mice. T2D-induced brain dysfunction was more severe in NTG compared to the APPxhQC mice. T2D induction impaired memory functions while increasing hepatic LC3B, ABCA1, and p65 levels in NTG mice. T2D induction resulted in a progressive shift of Aß from the soluble to insoluble form in APPxhQC mice. ASX treatment reversed T2D- induced memory dysfunction in NTG mice and in parallel increased hepatic pAKT while decreasing p65 and increasing cerebral p-S6rp and p65 levels. ASX treatment reduced soluble Aß38 and Aß40 and insoluble Aß40 levels in T2D-induced APPxhQC mice. CONCLUSIONS: We demonstrate that T2D induction in APPxhQC mice poses additional risk for AD pathology as seen by increased Aß deposition. Although ASX treatment reduced Aß expression in T2D-induced APPxhQC mice and rescued T2D-induced memory impairment in NTG mice, ASX treatment alone may not be effective in cases of T2D comorbidity and AD.

2.
EMBO Rep ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769419

ABSTRACT

Vitamin A (retinol) is distributed via the blood bound to its specific carrier protein, retinol-binding protein 4 (RBP4). Retinol-loaded RBP4 is secreted into the circulation exclusively from hepatocytes, thereby mobilizing hepatic retinoid stores that represent the major vitamin A reserves in the body. The relevance of extrahepatic retinoid stores for circulating retinol and RBP4 levels that are usually kept within narrow physiological limits is unknown. Here, we show that fasting affects retinoid mobilization in a tissue-specific manner, and that hormone-sensitive lipase (HSL) in adipose tissue is required to maintain serum concentrations of retinol and RBP4 during fasting in mice. We found that extracellular retinol-free apo-RBP4 induces retinol release by adipocytes in an HSL-dependent manner. Consistently, global or adipocyte-specific HSL deficiency leads to an accumulation of retinoids in adipose tissue and a drop of serum retinol and RBP4 during fasting, which affects retinoid-responsive gene expression in eye and kidney and lowers renal retinoid content. These findings establish a novel crosstalk between liver and adipose tissue retinoid stores for the maintenance of systemic vitamin A homeostasis during fasting.

3.
Brain Res ; 1819: 148518, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37579986

ABSTRACT

Defective degradation and clearance of amyloid-ß as well as inflammation per se are crucial players in the pathology of Alzheimer's disease (AD). A defective transport across the blood-brain barrier is causative for amyloid-ß (Aß) accumulation in the brain, provoking amyloid plaque formation. Using primary porcine brain capillary endothelial cells and murine organotypic hippocampal slice cultures as in vitro models of AD, we investigated the effects of the antioxidant astaxanthin (ASX) on Aß clearance and neuroinflammation. We report that ASX enhanced the clearance of misfolded proteins in primary porcine brain capillary endothelial cells by inducing autophagy and altered the Aß processing pathway. We observed a reduction in the expression levels of intracellular and secreted amyloid precursor protein/Aß accompanied by an increase in ABC transporters ABCA1, ABCG1 as well as low density lipoprotein receptor-related protein 1 mRNA levels. Furthermore, ASX treatment increased autophagic flux as evidenced by increased lipidation of LC3B-II as well as reduced protein expression of phosphorylated S6 ribosomal protein and mTOR. In LPS-stimulated brain slices, ASX exerted anti-inflammatory effects by reducing the secretion of inflammatory cytokines while shifting microglia polarization from M1 to M2 phenotype. Our data suggest ASX as potential therapeutic compound ameliorating AD-related blood brain barrier impairment and inflammation.


Subject(s)
Alzheimer Disease , Mice , Animals , Swine , Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , Amyloid beta-Peptides/metabolism , Endothelial Cells/metabolism , Amyloid beta-Protein Precursor/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Autophagy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mice, Transgenic , Disease Models, Animal
4.
Metabolites ; 12(11)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36355098

ABSTRACT

The α/ß-Hydrolase domain-containing protein 5 (ABHD5; also known as comparative gene identification-58, or CGI-58) is the causative gene of the Chanarin-Dorfman syndrome (CDS), a disorder mainly characterized by systemic triacylglycerol accumulation and a severe defect in skin barrier function. The clinical phenotype of CDS patients and the characterization of global and tissue-specific ABHD5-deficient mouse strains have demonstrated that ABHD5 is a crucial regulator of lipid and energy homeostasis in various tissues. Although ABHD5 lacks intrinsic hydrolase activity, it functions as a co-activating enzyme of the patatin-like phospholipase domain-containing (PNPLA) protein family that is involved in triacylglycerol and glycerophospholipid, as well as sphingolipid and retinyl ester metabolism. Moreover, ABHD5 interacts with perilipins (PLINs) and fatty acid-binding proteins (FABPs), which are important regulators of lipid homeostasis in adipose and non-adipose tissues. This review focuses on the multifaceted role of ABHD5 in modulating the function of key enzymes in lipid metabolism.

5.
J Lipid Res ; 63(10): 100268, 2022 10.
Article in English | MEDLINE | ID: mdl-36030930

ABSTRACT

Hepatocytes secrete retinol-binding protein 4 (RBP4) into circulation, thereby mobilizing vitamin A from the liver to provide retinol for extrahepatic tissues. Obesity and insulin resistance are associated with elevated RBP4 levels in the blood. However, in a previous study, we observed that chronically increased RBP4 by forced Rbp4 expression in the liver does not impair glucose homeostasis in mice. Here, we investigated the effects of an acute mobilization of hepatic vitamin A stores by hepatic overexpression of RBP4 in mice. We show that hepatic retinol mobilization decreases body fat content and enhances fat turnover. Mechanistically, we found that acute retinol mobilization increases hepatic expression and serum levels of fibroblast growth factor 21 (FGF21), which is regulated by retinol mobilization and retinoic acid in primary hepatocytes. Moreover, we provide evidence that the insulin-sensitizing effect of FGF21 is associated with organ-specific adaptations in retinoid homeostasis. Taken together, our findings identify a novel crosstalk between retinoid homeostasis and FGF21 in mice with acute RBP4-mediated retinol mobilization from the liver.


Subject(s)
Liver , Vitamin A , Mice , Animals , Vitamin A/metabolism , Liver/metabolism , Insulin/metabolism , Tretinoin/pharmacology , Glucose/metabolism
6.
Metabolites ; 12(6)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35736449

ABSTRACT

KIAA1363, annotated as neutral cholesterol ester hydrolase 1 (NCEH1), is a member of the arylacetamide deacetylase (AADAC) protein family. The name-giving enzyme, AADAC, is known to hydrolyze amide and ester bonds of a number of xenobiotic substances, as well as clinical drugs and of endogenous lipid substrates such as diglycerides, respectively. Similarly, KIAA1363, annotated as the first AADAC-like protein, exhibits enzymatic activities for a diverse substrate range including the xenobiotic insecticide chlorpyrifos oxon and endogenous substrates, acetyl monoalkylglycerol ether, cholesterol ester, and retinyl ester. Two independent knockout mouse models have been generated and characterized. However, apart from reduced acetyl monoalkylglycerol ether and cholesterol ester hydrolase activity in specific tissues and cell types, no gross-phenotype has been reported. This raises the question of its physiological role and whether it functions as drug detoxifying enzyme and/or as hydrolase/lipase of endogenous substrates. This review delineates the current knowledge about the structure, function and of the physiological role of KIAA1363, as evident from the phenotypical changes inflicted by pharmacological inhibition or by silencing as well as knockout of KIAA1363 gene expression in cells, as well as mouse models, respectively.

7.
Cell Rep ; 39(10): 110910, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35675775

ABSTRACT

In hepatocytes, peroxisome proliferator-activated receptor α (PPARα) orchestrates a genomic and metabolic response required for homeostasis during fasting. This includes the biosynthesis of ketone bodies and of fibroblast growth factor 21 (FGF21). Here we show that in the absence of adipose triglyceride lipase (ATGL) in adipocytes, ketone body and FGF21 production is impaired upon fasting. Liver gene expression analysis highlights a set of fasting-induced genes sensitive to both ATGL deletion in adipocytes and PPARα deletion in hepatocytes. Adipose tissue lipolysis induced by activation of the ß3-adrenergic receptor also triggers such PPARα-dependent responses not only in the liver but also in brown adipose tissue (BAT). Intact PPARα activity in hepatocytes is required for the cross-talk between adipose tissues and the liver during fat mobilization.


Subject(s)
Lipolysis , PPAR alpha , Adipose Tissue/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Hepatocytes/metabolism , Ketone Bodies/metabolism , Lipolysis/physiology , PPAR alpha/metabolism
8.
J Am Chem Soc ; 144(14): 6237-6250, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35362954

ABSTRACT

Chronically elevated circulating fatty acid levels promote lipid accumulation in nonadipose tissues and cause lipotoxicity. Adipose triglyceride lipase (ATGL) critically determines the release of fatty acids from white adipose tissue, and accumulating evidence suggests that inactivation of ATGL has beneficial effects on lipotoxicity-driven disorders including insulin resistance, steatohepatitis, and heart disease, classifying ATGL as a promising drug target. Here, we report on the development and biological characterization of the first small-molecule inhibitor of human ATGL. This inhibitor, designated NG-497, selectively inactivates human and nonhuman primate ATGL but not structurally and functionally related lipid hydrolases. We demonstrate that NG-497 abolishes lipolysis in human adipocytes in a dose-dependent and reversible manner. The combined analysis of mouse- and human-selective inhibitors, chimeric ATGL proteins, and homology models revealed detailed insights into enzyme-inhibitor interactions. NG-497 binds ATGL within a hydrophobic cavity near the active site. Therein, three amino acid residues determine inhibitor efficacy and species selectivity and thus provide the molecular scaffold for selective inhibition.


Subject(s)
Acyltransferases/antagonists & inhibitors , Adipocytes , Fatty Acids/metabolism , Lipolysis , Acyltransferases/metabolism , Adipocytes/metabolism , Animals , Humans , Lipolysis/physiology , Mice
9.
Nutrients ; 14(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35334893

ABSTRACT

Retinol binding protein 4 (RBP4) is the specific transport protein of the lipophilic vitamin A, retinol, in blood. Circulating RBP4 originates from the liver. It is secreted by hepatocytes after it has been loaded with retinol and binding to transthyretin (TTR). TTR association prevents renal filtration due to the formation of a higher molecular weight complex. In the circulation, RBP4 binds to specific membrane receptors, thereby delivering retinol to target cells, rendering liver-secreted RBP4 the major mechanism to distribute hepatic vitamin A stores to extrahepatic tissues. In particular, binding of RBP4 to 'stimulated by retinoic acid 6' (STRA6) is required to balance tissue retinoid responses in a highly homeostatic manner. Consequently, defects/mutations in RBP4 can cause a variety of conditions and diseases due to dysregulated retinoid homeostasis and cover embryonic development, vision, metabolism, and cardiovascular diseases. Aside from the effects related to retinol transport, non-canonical functions of RBP4 have also been reported. In this review, we summarize the current knowledge on the regulation and function of RBP4 in health and disease derived from murine models and human mutations.


Subject(s)
Retinoids , Vitamin A , Animals , Homeostasis , Humans , Liver/metabolism , Mice , Retinoids/metabolism , Tretinoin/metabolism
10.
J Lipid Res ; 63(3): 100173, 2022 03.
Article in English | MEDLINE | ID: mdl-35101424

ABSTRACT

Large quantities of vitamin A are stored as retinyl esters (REs) in specialized liver cells, the hepatic stellate cells (HSCs). To date, the enzymes controlling RE degradation in HSCs are poorly understood. In this study, we identified KIAA1363 (also annotated as arylacetamide deacetylase 1 or neutral cholesterol ester hydrolase 1) as a novel RE hydrolase. We show that KIAA1363 is expressed in the liver, mainly in HSCs, and exhibits RE hydrolase activity at neutral pH. Accordingly, addition of the KIAA1363-specific inhibitor JW480 largely reduced RE hydrolase activity in lysates of cultured murine and human HSCs. Furthermore, cell fractionation experiments and confocal microscopy studies showed that KIAA1363 localizes to the endoplasmic reticulum. We demonstrate that overexpression of KIAA1363 in cells led to lower cellular RE content after a retinol loading period. Conversely, pharmacological inhibition or shRNA-mediated silencing of KIAA1363 expression in cultured murine and human HSCs attenuated RE degradation. Together, our data suggest that KIAA1363 affects vitamin A metabolism of HSCs by hydrolyzing REs at the endoplasmic reticulum, thereby counteracting retinol esterification and RE storage in lipid droplets.


Subject(s)
Hepatic Stellate Cells , Retinyl Esters , Animals , Carboxylic Ester Hydrolases , Hepatic Stellate Cells/metabolism , Humans , Hydrolases/metabolism , Liver/metabolism , Mice , Sterol Esterase , Vitamin A/metabolism
11.
Front Physiol ; 12: 659977, 2021.
Article in English | MEDLINE | ID: mdl-33790810

ABSTRACT

Retinol binding protein 4 (RBP4) is a member of the lipocalin family and the major transport protein of the hydrophobic molecule retinol, also known as vitamin A, in the circulation. Expression of RBP4 is highest in the liver, where most of the body's vitamin A reserves are stored as retinyl esters. For the mobilization of vitamin A from the liver, retinyl esters are hydrolyzed to retinol, which then binds to RBP4 in the hepatocyte. After associating with transthyretin (TTR), the retinol/RBP4/TTR complex is released into the bloodstream and delivers retinol to tissues via binding to specific membrane receptors. So far, two distinct RBP4 receptors have been identified that mediate the uptake of retinol across the cell membrane and, under specific conditions, bi-directional retinol transport. Although most of RBP4's actions depend on its role in retinoid homeostasis, functions independent of retinol transport have been described. In this review, we summarize and discuss the recent findings on the structure, regulation, and functions of RBP4 and lay out the biological relevance of this lipocalin for human diseases.

12.
Commun Biol ; 4(1): 323, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33692445

ABSTRACT

Modulation of adipocyte lipolysis represents an attractive approach to treat metabolic diseases. Lipolysis mainly depends on two enzymes: adipose triglyceride lipase and hormone-sensitive lipase (HSL). Here, we investigated the short- and long-term impact of adipocyte HSL on energy homeostasis using adipocyte-specific HSL knockout (AHKO) mice. AHKO mice fed high-fat-diet (HFD) progressively developed lipodystrophy accompanied by excessive hepatic lipid accumulation. The increased hepatic triglyceride deposition was due to induced de novo lipogenesis driven by increased fatty acid release from adipose tissue during refeeding related to defective insulin signaling in adipose tissue. Remarkably, the fatty liver of HFD-fed AHKO mice reversed with advanced age. The reversal of fatty liver coincided with a pronounced lipodystrophic phenotype leading to blunted lipolytic activity in adipose tissue. Overall, we demonstrate that impaired adipocyte HSL-mediated lipolysis affects systemic energy homeostasis in AHKO mice, whereby with older age, these mice reverse their fatty liver despite advanced lipodystrophy.


Subject(s)
Adipocytes/enzymology , Energy Metabolism , Fatty Liver/enzymology , Lipodystrophy/enzymology , Lipolysis , Liver/metabolism , Sterol Esterase/deficiency , Adipocytes/pathology , Age Factors , Animals , Blood Glucose/metabolism , Disease Models, Animal , Fatty Liver/genetics , Fatty Liver/pathology , Insulin/metabolism , Lipodystrophy/genetics , Lipodystrophy/pathology , Liver/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , PPAR gamma/metabolism , Sterol Esterase/genetics , Time Factors
13.
J Lipid Res ; 61(7): 995-1003, 2020 07.
Article in English | MEDLINE | ID: mdl-32350080

ABSTRACT

Bis(monoacylglycero)phosphate (BMP), also known as lysobisphosphatidic acid, is a phospholipid that promotes lipid sorting in late endosomes/lysosomes by activating lipid hydrolases and lipid transfer proteins. Changes in the cellular BMP content therefore reflect an altered metabolic activity of the endolysosomal system. Surprisingly, little is known about the physiological regulation of BMP. In this study, we investigated the effects of nutritional and metabolic factors on BMP profiles of whole tissues and parenchymal and nonparenchymal cells. Tissue samples were obtained from fed, fasted, 2 h refed, and insulin-treated mice, as well as from mice housed at 5°C, 22°C, or 30°C. These tissues exhibited distinct BMP profiles that were regulated by the nutritional state in a tissue-specific manner. Insulin treatment was not sufficient to mimic refeeding-induced changes in tissue BMP levels, indicating that BMP metabolism is regulated by other hormonal or nutritional factors. Tissue fractionation experiments revealed that fasting drastically elevates BMP levels in hepatocytes and pancreatic cells. Furthermore, we observed that the BMP content in brown adipose tissue strongly depends on housing temperatures. In conclusion, our observations suggest that BMP concentrations adapt to the metabolic state in a tissue- and cell-type-specific manner in mice. Drastic changes observed in hepatocytes, pancreatic cells, and brown adipocytes suggest that BMP plays a role in the functional adaption to nutrient starvation and ambient temperature.


Subject(s)
Lysophospholipids/metabolism , Lysosomes/metabolism , Monoglycerides/metabolism , Animals , Endosomes/metabolism , Macrophages/cytology , Mice
14.
Article in English | MEDLINE | ID: mdl-32361002

ABSTRACT

Vitamin A is stored as retinyl esters (REs) in lipid droplets of hepatic stellate cells (HSCs). To date, two different pathways are known to facilitate the breakdown of REs: (i) Hydrolysis of REs by neutral lipases, and (ii) whole lipid droplet degradation in autolysosomes by acid hydrolysis. In this study, we evaluated the contribution of neutral and acid RE hydrolases to the breakdown of REs in human HSCs. (R)-Bromoenol lactone (R-BEL), inhibitor of adipose triglyceride lipase (ATGL) and patatin-like phospholipase domain-containing 3 (PNPLA3), the hormone-sensitive lipase (HSL) inhibitor 76-0079, as well as the serine-hydrolase inhibitor Orlistat reduced neutral RE hydrolase activity of LX-2 cell-lysates between 20 and 50%. Interestingly, in pulse-chase experiments, R-BEL, 76-0079, as well as Orlistat exerted little to no effect on cellular RE breakdown of LX-2 cells as well as primary human HSCs. In contrast, Lalistat2, a specific lysosomal acid lipase (LAL) inhibitor, virtually blunted acid in vitro RE hydrolase activity of LX-2 cells. Accordingly, HSCs isolated from LAL-deficient mice showed RE accumulation and were virtually devoid of acidic RE hydrolase activity. In pulse-chase experiments however, LAL-deficient HSCs, similar to LX-2 cells and primary human HSCs, were not defective in degrading REs. In summary, results demonstrate that ATGL, PNPLA3, and HSL contribute to neutral RE hydrolysis of human HSCs. LAL is the major acid RE hydrolase in HSCs. Yet, LAL is not limiting for RE degradation under serum-starvation. Together, results suggest that RE breakdown of HSCs is facilitated by (a) so far unknown, non-Orlistat inhibitable RE-hydrolase(s).


Subject(s)
Hepatic Stellate Cells/metabolism , Sterol Esterase/metabolism , Animals , Carboxylic Ester Hydrolases/metabolism , Cells, Cultured , Humans , Mice , Mice, Knockout
15.
BMC Genomics ; 21(1): 54, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31948394

ABSTRACT

BACKGROUND: Carotenoids contribute significantly to animal body coloration, including the spectacular color pattern diversity among fishes. Fish, as other animals, derive carotenoids from their diet. Following uptake, transport and metabolic conversion, carotenoids allocated to body coloration are deposited in the chromatophore cells of the integument. The genes involved in these processes are largely unknown. Using RNA-Sequencing, we tested for differential gene expression between carotenoid-colored and white skin regions of a cichlid fish, Tropheus duboisi "Maswa", to identify genes associated with carotenoid-based integumentary coloration. To control for positional gene expression differences that were independent of the presence/absence of carotenoid coloration, we conducted the same analyses in a closely related population, in which both body regions are white. RESULTS: A larger number of genes (n = 50) showed higher expression in the yellow compared to the white skin tissue than vice versa (n = 9). Of particular interest was the elevated expression level of bco2a in the white skin samples, as the enzyme encoded by this gene catalyzes the cleavage of carotenoids into colorless derivatives. The set of genes with higher expression levels in the yellow region included genes involved in xanthophore formation (e.g., pax7 and sox10), intracellular pigment mobilization (e.g., tubb, vim, kif5b), as well as uptake (e.g., scarb1) and storage (e.g., plin6) of carotenoids, and metabolic conversion of lipids and retinoids (e.g., dgat2, pnpla2, akr1b1, dhrs). Triglyceride concentrations were similar in the yellow and white skin regions. Extracts of integumentary carotenoids contained zeaxanthin, lutein and beta-cryptoxanthin as well as unidentified carotenoid structures. CONCLUSION: Our results suggest a role of carotenoid cleavage by Bco2 in fish integumentary coloration, analogous to previous findings in birds. The elevated expression of genes in carotenoid-rich skin regions with functions in retinol and lipid metabolism supports hypotheses concerning analogies and shared mechanisms between these metabolic pathways. Overlaps in the sets of differentially expressed genes (including dgat2, bscl2, faxdc2 and retsatl) between the present study and previous, comparable studies in other fish species provide useful hints to potential carotenoid color candidate genes.


Subject(s)
Carotenoids/metabolism , Cichlids/genetics , Animals , Cichlids/metabolism , Color , RNA-Seq , Real-Time Polymerase Chain Reaction , Triglycerides/metabolism
16.
Mol Cell Neurosci ; 99: 103390, 2019 09.
Article in English | MEDLINE | ID: mdl-31276749

ABSTRACT

Aberrant insulin signaling constitutes an early change in Alzheimer's disease (AD). Insulin receptors (IR) and low-density lipoprotein receptor-related protein-1 (LRP-1) are expressed in brain capillary endothelial cells (BCEC) forming the blood-brain barrier (BBB). There, insulin may regulate the function of LRP-1 in Aß clearance from the brain. Changes in IR-ß and LRP-1 and insulin signaling at the BBB in AD are not well understood. Herein, we identified a reduction in cerebral and cerebrovascular IR-ß levels in 9-month-old male and female 3XTg-AD (PS1M146V, APPSwe, and tauP301L) as compared to NTg mice, which is important in insulin mediated signaling responses. Reduced cerebral IR-ß levels corresponded to impaired insulin signaling and LRP-1 levels in brain. Reduced cerebral and cerebrovascular IR-ß and LRP-1 levels in 3XTg-AD mice correlated with elevated levels of autophagy marker LC3B. In both genotypes, high-fat diet (HFD) feeding decreased cerebral and hepatic LRP-1 expression and elevated cerebral Aß burden without affecting cerebrovascular LRP-1 and IR-ß levels. In vitro studies using primary porcine (p)BCEC revealed that Aß peptides 1-40 or 1-42 (240 nM) reduced cellular levels and interaction of LRP-1 and IR-ß thereby perturbing insulin-mediated signaling. Further mechanistic investigation revealed that Aß treatment accelerated the autophagy-lysosomal degradation of IR-ß and LRP-1 in pBCEC. LRP-1 silencing in pBCEC decreased IR-ß levels through post-translational pathways further deteriorating insulin-mediated responses at the BBB. Our findings indicate that LRP-1 proves important for insulin signaling at the BBB. Cerebral Aß burden in AD may accelerate LRP-1 and IR-ß degradation in BCEC thereby contributing to impaired cerebral and cerebromicrovascular insulin effects.


Subject(s)
Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Insulin/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Receptor, Insulin/metabolism , Signal Transduction , Amyloid beta-Peptides/pharmacology , Animals , Autophagy , Blood-Brain Barrier/cytology , Cells, Cultured , Endothelial Cells/drug effects , Female , Humans , Lysosomes/metabolism , Male , Mice , Mice, Inbred C57BL , Swine
17.
J Biol Chem ; 294(23): 9118-9133, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31023823

ABSTRACT

Lysosomal acid lipase (LAL) hydrolyzes cholesteryl ester (CE) and retinyl ester (RE) and triglyceride (TG). Mice globally lacking LAL accumulate CE most prominently in the liver. The severity of the CE accumulation phenotype progresses with age and is accompanied by hepatomegaly and hepatic cholesterol crystal deposition. In contrast, hepatic TG accumulation is much less pronounced in these mice, and hepatic RE levels are even decreased. To dissect the functional role of LAL for neutral lipid ester mobilization in the liver, we generated mice specifically lacking LAL in hepatocytes (hep-LAL-ko). On a standard chow diet, hep-LAL-ko mice exhibited increased hepatic CE accumulation but unaltered TG and RE levels. Feeding the hep-LAL-ko mice a vitamin A excess/high-fat diet (VitA/HFD) further increased hepatic cholesterol levels, but hepatic TG and RE levels in these mice were lower than in control mice. Performing in vitro activity assays with lysosome-enriched fractions from livers of mice globally lacking LAL, we detected residual acid hydrolytic activities against TG and RE. Interestingly, this non-LAL acid TG hydrolytic activity was elevated in lysosome-enriched fractions from livers of hep-LAL-ko mice upon VitA/HFD feeding. In conclusion, the neutral lipid ester phenotype in livers from hep-LAL-ko mice indicates that LAL is limiting for CE turnover, but not for TG and RE turnovers. Furthermore, in vitro hydrolase activity assays revealed the existence of non-LAL acid hydrolytic activities for TG and RE. The corresponding acid lipase(s) catalyzing these reactions remains to be identified.


Subject(s)
Cholesterol Esters/metabolism , Diterpenes/metabolism , Liver/metabolism , Sterol Esterase/genetics , Triglycerides/metabolism , Animals , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cells, Cultured , Cholesterol/blood , Cholesterol/metabolism , Diet, High-Fat , Diterpenes/chemistry , Hepatocytes/cytology , Hepatocytes/metabolism , Lipids/analysis , Mice , Mice, Inbred C57BL , Mice, Knockout , Phospholipids/analysis , Sterol Esterase/deficiency , Sterol Esterase/metabolism , Vitamin A/administration & dosage
18.
J Lipid Res ; 60(5): 1020-1031, 2019 05.
Article in English | MEDLINE | ID: mdl-30894461

ABSTRACT

Bis(monoacylglycerol)phosphate (BMP) is a phospholipid that is crucial for lipid degradation and sorting in acidic organelles. Genetic and drug-induced lysosomal storage disorders (LSDs) are associated with increased BMP concentrations in tissues and in the circulation. Data on BMP in disorders other than LSDs, however, are scarce, and key enzymes regulating BMP metabolism remain elusive. Here, we demonstrate that common metabolic disorders and the intracellular BMP hydrolase α/ß-hydrolase domain-containing 6 (ABHD6) affect BMP metabolism in mice and humans. In mice, dietary lipid overload strongly affects BMP concentration and FA composition in the liver and plasma, similar to what has been observed in LSDs. Notably, distinct changes in the BMP FA profile enable a clear distinction between lipid overload and drug-induced LSDs. Global deletion of ABHD6 increases circulating BMP concentrations but does not cause LSDs. In humans, nonalcoholic fatty liver disease and liver cirrhosis affect the serum BMP FA composition and concentration. Furthermore, we identified a patient with a loss-of-function mutation in the ABHD6 gene, leading to an altered circulating BMP profile. In conclusion, our results suggest that common metabolic diseases and ABHD6 affect BMP metabolism in mice and humans.


Subject(s)
Lysophospholipids/metabolism , Metabolic Diseases/metabolism , Monoacylglycerol Lipases/metabolism , Monoglycerides/metabolism , Adult , Aged , Animals , Female , Humans , Lysophospholipids/blood , Male , Metabolic Diseases/blood , Mice , Mice, Knockout , Mice, Transgenic , Middle Aged , Monoacylglycerol Lipases/deficiency , Monoacylglycerol Lipases/genetics , Monoglycerides/blood , Phenotype
19.
Biochim Biophys Acta Mol Basis Dis ; 1865(5): 879-894, 2019 05 01.
Article in English | MEDLINE | ID: mdl-29883718

ABSTRACT

Excessive accumulation of triacylglycerol is the common denominator of a wide range of clinical pathologies of liver diseases, termed non-alcoholic fatty liver disease. Such excessive triacylglycerol deposition in the liver is also referred to as hepatic steatosis. Although liver steatosis often resolves over time, it eventually progresses to steatohepatitis, liver fibrosis and cirrhosis, with associated complications, including liver failure, hepatocellular carcinoma and ultimately death of affected individuals. From the disease etiology it is obvious that a tight regulation between lipid uptake, triacylglycerol synthesis, hydrolysis, secretion and fatty acid oxidation is required to prevent triacylglycerol deposition in the liver. In addition to triacylglycerol, also a tight control of other neutral lipid ester classes, i.e. cholesteryl esters and retinyl esters, is crucial for the maintenance of a healthy liver. Excessive cholesteryl ester accumulation is a hallmark of cholesteryl ester storage disease or Wolman disease, which is associated with premature death. The loss of hepatic vitamin A stores (retinyl ester stores of hepatic stellate cells) is incidental to the onset of liver fibrosis. Importantly, this more advanced stage of liver disease usually does not resolve but progresses to life threatening stages, i.e. liver cirrhosis and cancer. Therefore, understanding the enzymes and pathways that mobilize hepatic neutral lipid esters is crucial for the development of strategies and therapies to ameliorate pathophysiological conditions associated with derangements of hepatic neutral lipid ester stores, including liver steatosis, steatohepatitis, and fibrosis. This review highlights the physiological roles of enzymes governing the mobilization of neutral lipid esters at different sites in liver cells, including cytosolic lipid droplets, endoplasmic reticulum, and lysosomes. This article is part of a Special Issue entitled Molecular Basis of Disease: Animal models in liver disease.


Subject(s)
Lipase/genetics , Lipid Metabolism , Liver Diseases/genetics , Liver/metabolism , Animals , Disease Models, Animal , Humans , Lipase/metabolism , Liver Diseases/metabolism , Liver Diseases/pathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...