Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
JACC Basic Transl Sci ; 8(11): 1424-1435, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38093739

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP) is considered as being a novel age-related risk factor for cardiovascular diseases. By capture-sequencing of a 67-gene panel, we established a large spectrum of CHIP in 258 patients with aortic valve stenosis undergoing transcatheter aortic valve replacement (TAVR) and assessed their association with long-term survival after TAVR. One or several CHIP variants in 35 genes were identified in 68% of the cohort, DNMT3A and TET2 being the 2 most frequently mutated genes. Patients carrying a TET2-CHIP-driver variant with low variant allele frequency (2%-10%) had a significant decrease in overall survival 5 years after TAVR.

2.
Circulation ; 146(5): 383-397, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35722876

ABSTRACT

BACKGROUND: Cerebral microbleeds (CMBs) have been observed in healthy elderly people undergoing systematic brain magnetic resonance imaging. The potential role of acute triggers on the appearance of CMBs remains unknown. We aimed to describe the incidence of new CMBs after transcatheter aortic valve replacement (TAVR) and to identify clinical and procedural factors associated with new CMBs including hemostatic measures and anticoagulation management. METHODS: We evaluated a prospective cohort of patients with symptomatic aortic stenosis referred for TAVR for CMBs (METHYSTROKE [Identification of Epigenetic Risk Factors for Ischemic Complication During the TAVR Procedure in the Elderly]). Standardized neurologic assessment, brain magnetic resonance imaging, and analysis of hemostatic measures including von Willebrand factor were performed before and after TAVR. Numbers and location of microbleeds on preprocedural magnetic resonance imaging and of new microbleeds on postprocedural magnetic resonance imaging were reported by 2 independent neuroradiologists blinded to clinical data. Measures associated with new microbleeds and postprocedural outcome including neurologic functional outcome at 6 months were also examined. RESULTS: A total of 84 patients (47% men, 80.9±5.7 years of age) were included. On preprocedural magnetic resonance imaging, 22 patients (26% [95% CI, 17%-37%]) had at least 1 microbleed. After TAVR, new microbleeds were observed in 19 (23% [95% CI, 14%-33%]) patients. The occurrence of new microbleeds was independent of the presence of microbleeds at baseline and of diffusion-weighted imaging hypersignals. In univariable analysis, a previous history of bleeding (P=0.01), a higher total dose of heparin (P=0.02), a prolonged procedure (P=0.03), absence of protamine reversion (P=0.04), higher final activated partial thromboplastin time (P=0.05), lower final von Willebrand factor high-molecular-weight:multimer ratio (P=0.007), and lower final closure time with adenosine-diphosphate (P=0.02) were associated with the occurrence of new postprocedural microbleeds. In multivariable analysis, a prolonged procedure (odds ratio, 1.22 [95% CI, 1.03-1.73] for every 5 minutes of fluoroscopy time; P=0.02) and postprocedural acquired von Willebrand factor defect (odds ratio, 1.42 [95% CI, 1.08-1.89] for every lower 0.1 unit of high-molecular-weight:multimer ratio; P=0.004) were independently associated with the occurrence of new postprocedural microbleeds. New CMBs were not associated with changes in neurologic functional outcome or quality of life at 6 months. CONCLUSIONS: One out of 4 patients undergoing TAVR has CMBs before the procedure and 1 out of 4 patients develops new CMBs. Procedural or antithrombotic management and persistence of acquired von Willebrand factor defect were associated with the occurrence of new CMBs. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT02972008.


Subject(s)
Cerebral Hemorrhage , Transcatheter Aortic Valve Replacement , Aged , Aortic Valve/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/epidemiology , Cerebral Hemorrhage/etiology , Female , Fluoroscopy , Hemostatics , Humans , Magnetic Resonance Imaging , Male , Prospective Studies , Quality of Life , Risk Factors , Transcatheter Aortic Valve Replacement/adverse effects , Treatment Outcome , von Willebrand Factor
3.
Int J Mol Sci ; 23(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35628113

ABSTRACT

Transcatheter aortic valve replacement (TAVR), as an alternative to open heart surgery, has revolutionized the treatment of severe aortic valve stenosis (AVS), the most common valvular disorder in the elderly. AVS is now considered a form of atherosclerosis and, like the latter, partly of inflammatory origin. Patients with high-grade AVS have a highly disturbed blood flow associated with high levels of shear stress. The immediate reopening of the valve during TAVR leads to a sudden restoration of a normal blood flow hemodynamic. Despite its good prognosis for patients, TAVR remains associated with bleeding or thrombotic postprocedural complications, involving mechanisms that are still poorly understood. Many studies report the close link between blood coagulation and inflammation, termed thromboinflammation, including monocytes as a major actor. The TAVR procedure represents a unique opportunity to study the influence of shear stress on human monocytes, key mediators of inflammation and hemostasis processes. The purpose of this study was to conduct a review of the literature to provide a comprehensive overview of the impact of TAVR on monocyte phenotype and subset repartition and the association of these parameters with the clinical outcomes of patients with severe AVS who underwent TAVR.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis , Thrombosis , Transcatheter Aortic Valve Replacement , Aged , Aortic Valve Stenosis/etiology , Humans , Inflammation/etiology , Monocytes , Thrombosis/etiology , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/methods
6.
Haemophilia ; 26(6): 1056-1063, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33094873

ABSTRACT

BACKGROUND: The causative variant remains unidentified in 2%-5% of haemophilia A (HA) patients despite an exhaustive sequencing of the full F8 coding sequence, splice consensus sequences, 5'/3' untranslated regions and copy number variant (CNV) analysis. Next-generation sequencing (NGS) has provided significant improvements for a complete F8 analysis. AIM: The aim of this study was to identify and characterize pathogenic non-coding variants in F8 of 15 French and Canadian HA patients genetically unresolved, through the use of NGS, mRNA sequencing and functional confirmation of aberrant splicing. METHODS: We sequenced the entire F8 gene using an NGS capture method. We analysed F8 mRNA in order to detect aberrant transcripts. The pathogenic effect of candidate intronic variants was further confirmed using a minigene assay. RESULTS: After bioinformatic analysis, 11 deep intronic variants were identified in 13 patients (8 new variants and 3 previously reported). Three variants were confirmed to be likely pathogenic with the presence of an aberrant transcript during mRNA analysis and minigene assay. We also found a small intronic deletion in 6 patients, recently described as causing mild HA. CONCLUSION: With this comprehensive work combining NGS and functional assays, we report new deep intronic variants that cause HA through splicing alteration mechanism. Functional analyses are critical to confirm the pathogenic effect of these variants and will be invaluable in the future to study the large number of variants of uncertain significance that may affect splicing that will be found in the human genome.


Subject(s)
Computational Biology/methods , Factor VIII/genetics , Hemophilia A/genetics , High-Throughput Nucleotide Sequencing/methods , Female , Humans , Male
7.
J Thromb Haemost ; 18(11): 2942-2953, 2020 11.
Article in English | MEDLINE | ID: mdl-32881304

ABSTRACT

BACKGROUND: Hypercoagulability seems to contribute to SARS-CoV-2 pneumonia pathogenesis. However, age and metabolic syndrome are potential confounders when assessing the value of coagulation biomarkers' prediction of COVID-19 outcomes. We assessed whether coagulation biomarkers, including factor VIII (FVIII) and von Willebrand factor (VWF) levels, measured at time of admission, were predictive of COVID-19 adverse outcomes irrespective of age and major comorbidities associated with metabolic syndrome. METHODS: Blood was sampled at admission in 243 adult COVID-19 patients for analysis of coagulation biomarkers including FVIII and VWF on platelet-poor plasma. The association between baseline C-reactive protein (CRP), activated partial thromboplastin time ratio, prothrombin time ratio, D-dimers, fibrinogen, FVIII, VWF antigen (VWF:Ag), and FVIII/VWF:Ag ratio levels and adverse outcomes (increased oxygen requirements, thrombosis, and death at day 30) was assessed by regression analysis after adjustment on age, sex, body mass index (BMI), diabetes, and hypertension. RESULTS: In univariable regression analysis increased CRP (subdistribution hazard ratio [SHR], 1.68; 95% confidence interval [CI], 1.26-2.23), increased fibrinogen (SHR, 1.32; 95% CI, 1.04-1.68), and decreased FVIII/VWF:Ag ratio (SHR, 0.70; 95% CI, 0.52-0.96) levels at admission were significantly associated with the risk of increased oxygen requirement during follow-up. Leucocytes (SHR, 1.36; 95% CI, 1.04-1.76), platelets (SHR,1.71; 95% CI, 1.11-2.62), D-dimers (SHR, 2.48; 95% CI, 1.66-3.78), and FVIII (SHR, 1.78; 95% CI, 1.17-2.68) were associated with early onset of thrombosis after admission. After adjustment for age, sex, BMI, hypertension, and diabetes, these associations were not modified. CONCLUSION: Coagulation biomarkers are early and independent predictors of increased oxygen requirement in COVID-19 patients.


Subject(s)
Blood Coagulation , COVID-19/therapy , Factor VIII/analysis , Oxygen Inhalation Therapy , Thrombosis/blood , Venous Thromboembolism/blood , von Willebrand Factor/analysis , Age Factors , Anticoagulants/therapeutic use , Biomarkers/blood , Blood Coagulation/drug effects , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , Comorbidity , Female , France/epidemiology , Humans , Male , Middle Aged , Patient Admission , Prevalence , Prospective Studies , Risk Assessment , Risk Factors , Sex Factors , Thrombosis/diagnosis , Thrombosis/epidemiology , Thrombosis/prevention & control , Treatment Outcome , Venous Thromboembolism/diagnosis , Venous Thromboembolism/epidemiology , Venous Thromboembolism/prevention & control
10.
J Thromb Haemost ; 18(5): 1087-1093, 2020 05.
Article in English | MEDLINE | ID: mdl-32073743

ABSTRACT

BACKGROUND: Recently, our group has reported a 13-bp deletion in a poly(T)-track in the F8 intron 13 as the causative variant in approximately 6% of all cases of mild haemophilia A (HA) in France. The systematic screening of mild HA patients for this deletion identified individuals carrying deletions from 9 to 14-bp in the same region. AIMS: To demonstrate that these highly prevalent deletions could result from a recurrent molecular mechanism and to determine the clinical significance of deletions other than 13-bp in size. METHODS: Haplotype analysis using five polymorphic markers was performed in 71 unrelated French mild hemophilia A patients. Minigene analysis was performed to study the splicing impact of deletions from 1 to 14-bp. RESULTS: A peculiar haplotype (H1) was identified in 22.5% of patients carrying the 13-bp deletion. Haplotypes differing from H1 only for the two most distal markers were found in more than the half of patients. These results confirmed the founder effect origin for the 13-bp deletion. However, the 9 patients carrying other sizes of deletion had a different haplotype suggesting that these deletions arose independently. Supporting the recurrent mechanism hypothesis, similar deletions were also found in 3/19 genetically unresolved mild Canadian patients. In vitro splicing analysis confirmed that deletions larger than 9-bp had a deleterious impact on splicing of F8 transcript. CONCLUSION: We demonstrated that the poly(T)-track in F8 intron 13 is a deletion hotspot. We recommend that deletions in this region should be specifically investigated in all genetically unresolved mild HA patients.


Subject(s)
Hemophilia A , Canada , DNA Mutational Analysis , Factor VIII/genetics , Founder Effect , France/epidemiology , Hemophilia A/diagnosis , Hemophilia A/epidemiology , Hemophilia A/genetics , Humans , Introns , Mutation
11.
J Thromb Haemost ; 17(8): 1384-1396, 2019 08.
Article in English | MEDLINE | ID: mdl-31126000

ABSTRACT

BACKGROUND: Scavenger receptors play a significant role in clearing aged proteins from the plasma, including the large glycoprotein coagulation factors von Willebrand factor (VWF) and factor VIII (FVIII). A large genome-wide association study meta-analysis has identified genetic variants in the gene SCARA5, which encodes the class A scavenger receptor SCARA5, as being associated with plasma levels of VWF and FVIII. OBJECTIVES: The ability of SCARA5 to regulate the clearance of VWF-FVIII was characterized. METHODS: VWF-FVIII interactions with SCARA5 were evaluated by solid phase binding assays and in vitro cell based assays. The influence of SCARA5 deficiency on VWF:Ag and half-life was assessed in a murine model. The expression pattern of SCARA5 and its colocalization with VWF was evaluated in human tissues. RESULTS: VWF and the VWF-FVIII complex bound to human recombinant SCARA5 in a dose- and calcium-dependent manner. SCARA5 expressing HEK 293T cells bound and internalized VWF and the VWF-FVIII complex into early endosomes. In vivo, SCARA5 deficiency had a modest influence on the half-life of human VWF. mRNA analysis and immunohistochemistry determined that human SCARA5 is expressed in kidney podocytes and the red pulp, white pulp, and marginal zone of the spleen. VWF was found to colocalize with SCARA5 expressed by littoral cells lining the red pulp of the human spleen. CONCLUSIONS: SCARA5 is an adhesive and endocytic receptor for VWF. In human tissues, SCARA5 is expressed by kidney podocytes and splenic littoral endothelial cells. SCARA5 may have a modest influence on VWF clearance in humans.


Subject(s)
Endocytosis , Scavenger Receptors, Class A/metabolism , Spleen/metabolism , von Willebrand Factor/metabolism , Animals , Factor VIII/metabolism , Female , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Podocytes/metabolism , Protein Binding , Scavenger Receptors, Class A/genetics , Spleen/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...