Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Genet Mol Biol ; 47(Suppl 1): e20230317, 2024.
Article in English | MEDLINE | ID: mdl-38829285

ABSTRACT

In the search for alternatives to overcome the challenge imposed by drug resistance development in cancer treatment, the modulation of autophagy has emerged as a promising alternative that has achieved good results in clinical trials. Nevertheless, most of these studies have overlooked a novel and selective type of autophagy: chaperone-mediated autophagy (CMA). Following its discovery, research into CMA's contribution to tumor progression has accelerated rapidly. Therefore, we now understand that stress conditions are the primary signal responsible for modulating CMA in cancer cells. In turn, the degradation of proteins by CMA can offer important advantages for tumorigenesis, since tumor suppressor proteins are CMA targets. Such mutual interaction between the tumor microenvironment and CMA also plays a crucial part in establishing therapy resistance, making this discussion the focus of the present review. Thus, we highlight how suppression of LAMP2A can enhance the sensitivity of cancer cells to several drugs, just as downregulation of CMA activity can lead to resistance in certain cases. Given this panorama, it is important to identify selective modulators of CMA to enhance the therapeutic response.

2.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38717250

ABSTRACT

Temozolomide (TMZ) is the leading therapeutic agent for combating Glioblastoma Multiforme (GBM). Nonetheless, the persistence of chemotherapy-resistant GBM cells remains an ongoing challenge, attributed to various factors, including the translesion synthesis (TLS) mechanism. TLS enables tumor cells to endure genomic damage by utilizing specialized DNA polymerases to bypass DNA lesions. Specifically, TLS polymerase Kappa (Polκ) has been implicated in facilitating DNA damage tolerance against TMZ-induced damage, contributing to a worse prognosis in GBM patients. To better understand the roles of Polκ in TMZ resistance, we conducted a comprehensive assessment of the cytotoxic, antiproliferative, antimetastatic, and genotoxic effects of TMZ on GBM (U251MG) wild-type (WTE) and TLS Polκ knockout (KO) cells, cultivated as three-dimensional (3D) tumor spheroids in vitro. Initial results revealed that TMZ: (i) induces reductions in GBM spheroid diameter (10-200 µM); (ii) demonstrates significant cytotoxicity (25-200 µM); (iii) exerts antiproliferative effects (≤25 µM) and promotes cell cycle arrest (G2/M phase) in Polκ KO spheroids when compared with WTE counterparts. Furthermore, Polκ KO spheroids exhibit elevated levels of cell death (Caspase 3/7) and display greater genotoxicity (53BP1) than WTE following TMZ exposure. Concerning antimetastatic effects, TMZ impedes invadopodia (3D invasion) more effectively in Polκ KO than in WTE spheroids. Collectively, the results suggest that TLS Polκ plays a vital role in the survival, cell death, genotoxicity, and metastatic potential of GBM spheroids in vitro when subjected to TMZ treatment. While the precise mechanisms underpinning this resistance remain elusive, TLS Polκ emerges as a potential therapeutic target for GBM patients.


Subject(s)
DNA-Directed DNA Polymerase , Drug Resistance, Neoplasm , Glioblastoma , Spheroids, Cellular , Temozolomide , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/enzymology , Temozolomide/pharmacology , Drug Resistance, Neoplasm/drug effects , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/enzymology , Antineoplastic Agents, Alkylating/pharmacology
3.
J Mol Biol ; 435(24): 168353, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37935254

ABSTRACT

The Y-family DNA polymerases - Pol ι, Pol η, Pol κ and Rev1 - are most well-known for their roles in the DNA damage tolerance pathway of translesion synthesis (TLS). They function to overcome replication barriers by bypassing DNA damage lesions that cannot be normally replicated, allowing replication forks to continue without stalling. In this work, we demonstrate a novel interaction between each Y-family polymerase and the nucleotide excision repair (NER) proteins, RAD23A and RAD23B. We initially focus on the interaction between RAD23A and Pol ι, and through a series of biochemical, cell-based, and structural assays, find that the RAD23A ubiquitin-binding domains (UBA1 and UBA2) interact with separate sites within the Pol ι catalytic domain. While this interaction involves the ubiquitin-binding cleft of UBA2, Pol ι interacts with a distinct surface on UBA1. We further find that mutating or deleting either UBA domain disrupts the RAD23A-Pol ι interaction, demonstrating that both interactions are necessary for stable binding. We also provide evidence that both RAD23 proteins interact with Pol ι in a similar manner, as well as with each of the Y-family polymerases. These results shed light on the interplay between the different functions of the RAD23 proteins and reveal novel binding partners for the Y-family TLS polymerases.


Subject(s)
DNA Repair Enzymes , DNA-Binding Proteins , DNA-Directed DNA Polymerase , DNA Damage , DNA Polymerase iota/chemistry , DNA Repair , DNA Replication , DNA-Directed DNA Polymerase/metabolism , Ubiquitins/chemistry , DNA-Binding Proteins/chemistry , DNA Repair Enzymes/chemistry
4.
Biomedicines ; 11(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37189700

ABSTRACT

The transcription factor NRF2 is constitutively active in glioblastoma, a highly aggressive brain tumor subtype with poor prognosis. Temozolomide (TMZ) is the primary chemotherapeutic agent for this type of tumor treatment, but resistance to this drug is often observed. This review highlights the research that is demonstrating how NRF2 hyperactivation creates an environment that favors the survival of malignant cells and protects against oxidative stress and TMZ. Mechanistically, NRF2 increases drug detoxification, autophagy, DNA repair, and decreases drug accumulation and apoptotic signaling. Our review also presents potential strategies for targeting NRF2 as an adjuvant therapy to overcome TMZ chemoresistance in glioblastoma. Specific molecular pathways, including MAPKs, GSK3ß, ßTRCP, PI3K, AKT, and GBP, that modulate NRF2 expression leading to TMZ resistance are discussed, along with the importance of identifying NRF2 modulators to reverse TMZ resistance and develop new therapeutic targets. Despite the significant progress in understanding the role of NRF2 in GBM, there are still unanswered questions regarding its regulation and downstream effects. Future research should focus on elucidating the precise mechanisms by which NRF2 mediates resistance to TMZ, and identifying potential novel targets for therapeutic intervention.

5.
Cells, v. 9, n. 12, 2573, dez. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3381

ABSTRACT

Glioblastoma is a severe type of brain tumor with a poor prognosis and few therapy options. Temozolomide (TMZ) is one of these options, however, with limited success, and failure is mainly due to tumor resistance. In this work, genome-wide CRISPR-Cas9 lentiviral screen libraries for gene knockout or activation were transduced in the human glioblastoma cell line, aiming to identify genes that modulate TMZ resistance. The sgRNAs enriched in both libraries in surviving cells after TMZ treatment were identified by next-generation sequencing (NGS). Pathway analyses of gene candidates on knockout screening revealed several enriched pathways, including the mismatch repair and the Sonic Hedgehog pathways. Silencing three genes ranked on the top 10 list (MSH2, PTCH2, and CLCA2) confirm cell protection from TMZ-induced death. In addition, a CRISPR activation library revealed that NRF2 and Wnt pathways are involved in TMZ resistance. Consistently, overexpression of FZD6, CTNNB1, or NRF2 genes significantly increased cell survival upon TMZ treatment. Moreover, NRF2 and related genes detected in this screen presented a robust negative correlation with glioblastoma patient survival rates. Finally, several gene candidates from knockout or activation screening are targetable by inhibitors or small molecules, and some of them have already been used in the clinic.

6.
Mol Immunol ; 101: 507-513, 2018 09.
Article in English | MEDLINE | ID: mdl-30144701

ABSTRACT

Cisplatin is a chemotherapy used to treat different types of cancer, such as testicular, bladder and head and neck. Physical exercise has been shown to improve cancer therapy and recently, it was demonstrated to be able to diminish side effects such as acute kidney injury (AKI), a common side effect in cisplatin treatment. In both cases, the modulation of inflammatory cytokines seems to be one of the mechanisms, but little is known about the immune cells in this process. Here, we investigated the role of CD4 + T cells in the AKI protection by physical exercise. We subjected C57Bl6 mice to long-term physical exercise (EX) before cisplatin treatment. Sedentary groups were used as control (CT). We confirmed that physical exercise decreased AKI by evaluating creatinine and Kim-1 levels, in the serum and kidney respectively. Analyzing the organs weight, we noticed a decrease in sedentary (CIS) and exercised (CIS-EX) cisplatin treated groups. Epididymal and brown adipose tissue weight were decreased in cisplatin treated subjects in comparison to untreated groups, as well as liver and spleen. We then investigated the profile of CD4 + T cells in the spleen and we observed increased levels of Tregs and CD4+CD25+ cells in CIS group, while CIS-EX presented similar amounts as control groups. Analyzing the kidney lymph nodes, we noticed a decrease of CD4+ cells in both CIS and CIS-EX group. However, a more activated phenotype (CD69+ and CD25+) was observed in CIS groups in comparison to CIS-EX group, as well as the presence of Tregs. We then investigated the production of cytokines by these cells and no difference among the groups was observed in cytokines production in splenic CD4 + T cells. However, a clear increase in TNF and IL-10 production was observed in CD4 + T cells from lymph nodes, while CIS-EX group presented similar levels as the control groups. We confirmed that physical exercise was able to diminish cisplatin-induced AKI with concomitant decrease in CD4 + T cell activation.


Subject(s)
Acute Kidney Injury/chemically induced , Acute Kidney Injury/immunology , CD4-Positive T-Lymphocytes/immunology , Cisplatin/adverse effects , Lymphocyte Activation/immunology , Physical Conditioning, Animal , Acute Kidney Injury/prevention & control , Animals , Cytokines/biosynthesis , Lymph Nodes/pathology , Male , Mice, Inbred C57BL , Phenotype , Spleen/pathology
7.
Cell Rep ; 19(11): 2272-2288, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28614714

ABSTRACT

The underlying mechanism by which MyD88 regulates the development of obesity, metainflammation, and insulin resistance (IR) remains unknown. Global deletion of MyD88 in high-fat diet (HFD)-fed mice resulted in increased weight gain, impaired glucose homeostasis, elevated Dectin-1 expression in adipose tissue (AT), and proinflammatory CD11c+ AT macrophages (ATMs). Dectin-1 KO mice were protected from diet-induced obesity (DIO) and IR and had reduced CD11c+ AT macrophages. Dectin-1 antagonist improved glucose homeostasis and decreased CD11c+ AT macrophages in chow- and HFD-fed MyD88 KO mice. Dectin-1 agonist worsened glucose homeostasis in MyD88 KO mice. Dectin-1 expression is increased in AT from obese individuals. Together, our data indicate that Dectin-1 regulates AT inflammation by promoting CD11c+ AT macrophages in the absence of MyD88 and identify a role for Dectin-1 in chronic inflammatory states, such as obesity. This suggests that Dectin-1 may have therapeutic implications as a biomarker for metabolic dysregulation in humans.


Subject(s)
Adipose Tissue/metabolism , Insulin Resistance/genetics , Lectins, C-Type/metabolism , Macrophages/metabolism , Obesity/genetics , Animals , Humans , Male , Mice
8.
Cell Reports ; 19(11): 2272-2288, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15153

ABSTRACT

The underlying mechanism by which MyD88 regulates the development of obesity, metainflammation, and insulin resistance (IR) remains unknown. Global deletion of MyD88 in high-fat diet (HFD)fed mice resulted in increased weight gain, impaired glucose homeostasis, elevated Dectin-1 expression in adipose tissue (AT), and proinflammatory CD11c+ AT macrophages (ATMs). Dectin-1 KO mice were protected from diet-induced obesity (DIO) and IR and had reduced CD11c+ AT macrophages. Dectin-1 antagonist improved glucose homeostasis and decreased CD11c+ AT macrophages in chow-and HFD-fed MyD88 KO mice. Dectin-1 agonist worsened glucose homeostasis in MyD88 KO mice. Dectin-1 expression is increased in AT from obese individuals. Together, our data indicate that Dectin-1 regulates AT inflammation by promoting CD11c+ AT macrophages in the absence of MyD88 and identify a role for Dectin-1 in chronic inflammatory states, such as obesity. This suggests that Dectin-1 may have ther-apeutic implications as a biomarker for metabolic dysregulation in humans.

SELECTION OF CITATIONS
SEARCH DETAIL
...