Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 5(15): 2935-2944, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34323957

ABSTRACT

Single-nucleotide polymorphisms (SNPs) have been shown to influence Fcγ receptor (FcγR) affinity and activity, but their effect on treatment response is unclear. We assessed their importance in the efficacy of obinutuzumab or rituximab combined with chemotherapy in untreated advanced follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) in the GALLIUM (www.clinicaltrials.gov #NCT01332968) and GOYA (#NCT01287741) trials, respectively. Genomic DNA was extracted from patients enrolled in GALLIUM (n = 1202) and GOYA (n = 1418). Key germline SNPs, FCGR2A R131H (rs1801274), FCGR3A F158V (rs396991), and FCGR2B I232T (rs1050501), were genotyped and assessed for their impact on investigator-assessed progression-free survival (PFS). In both cohorts there was no prognostic effect of FCGR2A or FCGR3A. In FL, FCGR2B was associated with favorable PFS in univariate and multivariate analyses comparing I232T with I232I, with a more modest association for rituximab-treated (univariate: hazard ratio [HR], 0.78; 95% confidence interval [CI], 0.54-1.14; P = .21) vs obinutuzumab-treated patients (HR, 0.56; 95% CI, 0.34-0.91; P = .02). Comparing T232T with I232I, an association was found for obinutuzumab (univariate: HR, 2.76; 95% CI, 1.02-7.5; P = .0459). Neither observation retained significance after multiple-test adjustment. FCGR2B was associated with poorer PFS in multivariate analyses comparing T232T with I232I in rituximab- but not obinutuzumab-treated patients with DLBCL (HR, 4.40; 95% CI, 1.71-11.32; P = .002; multiple-test-adjusted P = .03); however, this genotype was rare (n = 13). This study shows that FcγR genotype is not associated with response to rituximab/obinutuzumab plus chemotherapy in treatment-naive patients with advanced FL or DLBCL.


Subject(s)
Lymphoma, Follicular , Receptors, IgG , Humans , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Lymphoma, Follicular/drug therapy , Polymorphism, Single Nucleotide , Receptors, IgG/genetics , Rituximab/therapeutic use
2.
Front Immunol ; 10: 390, 2019.
Article in English | MEDLINE | ID: mdl-30899264

ABSTRACT

Monoclonal antibody (mAb) immunotherapy has transformed the treatment of allergy, autoimmunity, and cancer. The interaction of mAb with Fc gamma receptors (FcγR) is often critical for efficacy. The genes encoding the low-affinity FcγR have single nucleotide polymorphisms (SNPs) and copy number variation that can impact IgG Fc:FcγR interactions. Leukocyte-based in vitro assays remain one of the industry standards for determining mAb efficacy and predicting adverse responses in patients. Here we addressed the impact of FcγR genetics on immune cell responses in these assays and investigated the importance of assay format. FcγR genotyping of 271 healthy donors was performed using a Multiplex Ligation-Dependent Probe Amplification assay. Freeze-thawed/pre-cultured peripheral blood mononuclear cells (PBMCs) and whole blood samples from donors were stimulated with reagents spanning different mAb functional classes to evaluate the association of FcγR genotypes with T-cell proliferation and cytokine release. Using freeze-thawed/pre-cultured PBMCs, agonistic T-cell-targeting mAb induced T-cell proliferation and the highest levels of cytokine release, with lower but measurable responses from mAb which directly require FcγR-mediated cellular effects for function. Effects were consistent for individual donors over time, however, no significant associations with FcγR genotypes were observed using this assay format. In contrast, significantly elevated IFN-γ release was associated with the FCGR2A-131H/H genotype compared to FCGR2A-131R/R in whole blood stimulated with Campath (p ≤ 0.01) and IgG1 Fc hexamer (p ≤ 0.05). Donors homozygous for both the high affinity FCGR2A-131H and FCGR3A-158V alleles mounted stronger IFN-γ responses to Campath (p ≤ 0.05) and IgG1 Fc Hexamer (p ≤ 0.05) compared to donors homozygous for the low affinity alleles. Analysis revealed significant reductions in the proportion of CD14hi monocytes, CD56dim NK cells (p ≤ 0.05) and FcγRIIIa expression (p ≤ 0.05), in donor-matched freeze-thawed PBMC compared to whole blood samples, likely explaining the difference in association between FcγR genotype and mAb-mediated cytokine release in the different assay formats. These findings highlight the significant impact of FCGR2A and FCGR3A SNPs on mAb function and the importance of using fresh whole blood assays when evaluating their association with mAb-mediated cytokine release in vitro. This knowledge can better inform on the utility of in vitro assays for the prediction of mAb therapy outcome in patients.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody Affinity/genetics , Cytokine Release Syndrome/genetics , Immunologic Techniques , Polymorphism, Single Nucleotide , Receptors, IgG/genetics , Antibodies, Monoclonal/pharmacology , Cytokines/biosynthesis , Genotype , Humans , Leukocytes, Mononuclear/immunology , Receptors, IgG/immunology
4.
PLoS One ; 10(11): e0142379, 2015.
Article in English | MEDLINE | ID: mdl-26545243

ABSTRACT

Cancer immunotherapy has been revolutionised by the use monoclonal antibodies (mAb) that function through their interaction with Fc gamma receptors (FcγRs). The low-affinity FcγR genes are highly homologous, map to a complex locus at 1p23 and harbour single nucleotide polymorphisms (SNPs) and copy number variation (CNV) that can impact on receptor function and response to therapeutic mAbs. This complexity can hinder accurate characterisation of the locus. We therefore evaluated and optimised a suite of assays for the genomic analysis of the FcγR locus amenable to peripheral blood mononuclear cells and formalin-fixed paraffin-embedded (FFPE) material that can be employed in a high-throughput manner. Assessment of TaqMan genotyping for FCGR2A-131H/R, FCGR3A-158F/V and FCGR2B-232I/T SNPs demonstrated the need for additional methods to discriminate genotypes for the FCGR3A-158F/V and FCGR2B-232I/T SNPs due to sequence homology and CNV in the region. A multiplex ligation-dependent probe amplification assay provided high quality SNP and CNV data in PBMC cases, but there was greater data variability in FFPE material in a manner that was predicted by the BIOMED-2 multiplex PCR protocol. In conclusion, we have evaluated a suite of assays for the genomic analysis of the FcγR locus that are scalable for application in large clinical trials of mAb therapy. These assays will ultimately help establish the importance of FcγR genetics in predicting response to antibody therapeutics.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Receptors, IgG/genetics , Antibodies, Monoclonal/therapeutic use , DNA/genetics , DNA/isolation & purification , DNA Copy Number Variations , Humans , Leukocytes, Mononuclear/immunology , Multiplex Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL