Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Ergon ; 118: 104286, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583317

ABSTRACT

The human-nature connection is one of the main aspects determining supportive and comfortable office environments. In this context, the application of eye-tracking-equipped Virtual Reality (VR) devices to support an evaluation on the effect of greenery elements indoors on individuals' efficiency and engagement is limited. A new approach to investigate visual attention, distraction, cognitive load and performance in this field is carried out via a pilot-study comparing three virtual office layouts (Indoor Green, Outdoor Green and Non-Biophilic). 63 participants completed cognitive tasks and surveys while measuring gaze behaviour. Sense of presence, immersivity and cybersickness results supported the ecological validity of VR. Visual attention was positively influenced by the proximity of users to the greenery element, while visual distraction from tasks was negatively influenced by the dimension of the greenery. In the presence of greenery elements, lower cognitive loads and more efficient information searching, resulting in improved performance, were also highlighted.


Subject(s)
Attention , Cognition , Eye-Tracking Technology , Virtual Reality , Humans , Pilot Projects , Male , Female , Adult , Young Adult , Workplace/psychology , Task Performance and Analysis , User-Computer Interface
2.
Genes (Basel) ; 13(3)2022 03 21.
Article in English | MEDLINE | ID: mdl-35328108

ABSTRACT

Some of the key genes and regulatory mechanisms controlling drought response in durum wheat have been identified. One of the major challenges for breeders is how to use this knowledge for the achievement of drought stress tolerance. In the present study, we report the expression profiles of the TdDRF1 gene, at consecutive plant growth stages, from different durum wheat genotypes evaluated in two different field environments. The expression of a possible target gene (Wdnh13) of the TdDRF1 gene was also investigated and analogies with the transcript profiles were found. The results of the qRT-PCR highlighted differences in molecular patterns, thus suggesting a genotype dependency of the TdDRF1 gene expression in response to the stress induced. Furthermore, a statistical association between the expression of TdDRF1 transcripts and agronomic traits was also performed and significant differences were found among genotypes, suggesting a relationship. One of the genotypes was found to combine molecular and agronomic characteristics.


Subject(s)
Plant Proteins , Triticum , Droughts , Genotype , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Front Plant Sci ; 12: 782072, 2021.
Article in English | MEDLINE | ID: mdl-34987533

ABSTRACT

This study aims to highlight the major effects of biochar incorporation into potting soil substrate on plant growth and performance in early growth stages of five elite Italian varieties of durum wheat (Triticum durum). The biochars used were obtained from two contrasting feedstocks, namely wood chips and wheat straw, by gasification under high temperature conditions, and were applied in a greenhouse experiment either as pure or as nutrient-activated biochar obtained by incubation with digestate. The results of the experiment showed that specific genotypes as well as different treatments with biochar have significant effects on plant response when looking at shoot traits related to growth. The evaluated genotypes could be clustered in two main distinct groups presenting, respectively, significantly increasing (Duilio, Iride, and Saragolla varieties) and decreasing (Marco Aurelio and Grecale varieties) values of projected shoot system area (PSSA), fresh weight (FW), dry weight (DW), and plant water loss by evapotranspiration (ET). All these traits were correlated with Pearson correlation coefficients ranging from 0.74 to 0.98. Concerning the treatment effect, a significant alteration of the mentioned plant traits was observed when applying biochar from wheat straw, characterized by very high electrical conductivity (EC), resulting in a reduction of 34.6% PSSA, 43.2% FW, 66.9% DW, and 36.0% ET, when compared to the control. Interestingly, the application of the same biochar after nutrient spiking with digestate determined about a 15-30% relief from the abovementioned reduction induced by the application of the sole pure wheat straw biochar. Our results reinforce the current basic knowledge available on biological soil amendments as biochar and digestate.

4.
Environ Sci Pollut Res Int ; 26(7): 6503-6516, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30627995

ABSTRACT

The meadow froghopper, Philaenus spumarius L., is endemic in Italy and was not considered a harmful species until 2014, when the olive quick decline syndrome (OQDS) showed up in Apulia (southern Italy). It was immediately suspected and then verified as the main vector of Xylella fastidiosa, the bacterium responsible for the disease. Currently, EU Directives consider the fight against P. spumarius compulsory in member states and recommend Integrated Pest Management (IPM), both in uncultivated and cultivated infested areas, to minimise the environmental impact of chemical pesticides. This should be based on an improved knowledge of the vector with its seasonal trends and feeding habits linked to specific herbaceous species. In this context, our field study was aimed to improve the understanding of the vector nutritional behaviour, especially at its critical nymph stage, by monitoring its presence on different herbaceous target species, using its typical feeding foams as key indicator. The study area was in Lazio region (central Italy), dedicated to olive growing and still unaffected by the X. fastidiosa plague. Over two years, during the nymph development period, field data have been acquired over the test area and then analysed by coupling statistical (ANOVA), geographical information system (GIS) and geo-referenced field sampling approaches. Results highlighted that P. spumarius exhibits significant preferences for specific herbaceous plants, especially at its early development stages, detectable by tenuous spittle. This indicates female oviposition activity, which seems also not influenced by olive tree proximity. Furthermore, the non-host plant species identified here could be suitable for creating green barriers for limiting the vector diffusion to contiguous areas where sensible plantations are growing. In the final section, applied implications arising from the present findings for P. spumarius population management are discussed.


Subject(s)
Hemiptera/physiology , Insect Vectors , Olea/microbiology , Xylella/growth & development , Animals , Female , Hemiptera/microbiology , Italy , Nymph , Plant Diseases/statistics & numerical data
5.
Front Microbiol ; 10: 2694, 2019.
Article in English | MEDLINE | ID: mdl-31920998

ABSTRACT

Biochar shapes the soil environment and plant growth. Nevertheless, the mechanisms associated with an improved plant biomass and soil microbiome in low metal-contaminated soils are still unclear. In this study, the influence of biochar on soil physico-chemical properties, plant performance, and rhizosphere microbiota in durum wheat was investigated at the above- and belowground levels. Two kinds of biochar from different feedstocks (wood chips and wheat straw pellets) and two Italian durum wheat varieties, Duilio and Marco Aurelio, were analyzed in a greenhouse using a low-nutrient gleyic fluvisol containing a very small amount of Pb and Zn. Four different treatments were performed: soil-only control (C), soil amended with woody biochar equilibrated with nutrient solution (B1+) and non-activated (B1-), and soil amended with non-activated (B2-) wheat straw biochar. Seven weeks after seed germination, (1) the physico-chemical properties of soil, biochars, and mixtures were assessed; (2) the fresh and dry weight of aboveground plant tissues and roots and other morphometric traits were measured; and (3) metabarcoding of the 16S rRNA bacterial gene was performed on rhizosphere soil samples. The results showed that the biochar from wheat straw had stronger impact on both durum varieties, with higher electrical conductivity, higher levels of available K and Na, and a substantial increase of dissolved Na+, K+, and Cl- ions in pore water. Generally, biochar amendment decreased Zn availability for the plants. In addition, biochar improved plant growth in the early growth stage, and the more positive effect was achieved by combining wheat straw biochar with Marco Aurelio. Rhizosphere bacterial microbiota showed variation in alpha diversity only due to treatment; on the other hand, the differential analysis showed consistent variation among samples with significant effects on amplicon sequence variant (ASV) abundance due to the specific biochar treatment as well as the genotype. The pure B1-, due to its scarce nutrient content with respect to the richer types (B1+ and B2-), had a negative impact on microbiota richness. Our study highlights that an appropriate combination of biochar feedstock and crop species may lead to superior yield.

6.
Front Nutr ; 5: 110, 2018.
Article in English | MEDLINE | ID: mdl-30533415

ABSTRACT

Although Scientific Societies have stated that there are very few indications for the use of soy-based formula (SF) in infant nutrition, their utilization rates have been repeatedly found to be higher than expected. It is likely that a significant role in this regard is played by the belief that the use of SF during infancy can reduce the risk of the development of several diseases later in life. Although no definitive data that can substantiate these claims have been collected, many people perceive soy consumption to confer significant health benefits and might also use soy for infant nutrition. However, not all the problems regarding safety of SF in infants have been definitively solved. Among risks, the potentially toxic role of the phyto-oestrogens contained in SF is not definitively established. In vitro and animal studies have raised suspicions that SF could have potentially negative effects on sexual development and reproductive function, neurobehavioral development, immune function, and thyroid function. Several studies in humans have aimed to assess whether the results of animal studies can be applied to humans and whether SF can be used in infants following the official recommendations. The results are somewhat conflicting. The aim of this narrative review is to discuss what is presently known regarding the impact of phyto-oestrogens in SF on early and late child development. PubMed was used to search for the studies published from January 1980 to June 2017 using the keywords: "soy," "soy formula," "child," "phytoestrogens." Analysis of the literature showed that a global evaluation of the impact of modern SFs on human development seems to suggest that their use is not associated with relevant abnormalities. Only children with congenital hypothyroidism need adequate monitoring of thyroid function.

7.
Mol Genet Genomics ; 291(6): 2043-2054, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27495179

ABSTRACT

Oat kernels exhibit an extra-soft texture, a trait recently demonstrated to be largely modulated by starch-bound tryptophan-rich 2S proteins, the vromindolines. In this study, fractionation by two-dimensional electrophoresis of starch-bound proteins in 25 oat (Avena sativa) cultivars and 11 diploid or tetraploid Avena species revealed novel 2S proteins called Avena α-amylase/trypsin-inhibitors (AATI) because of their sequence similarity with wheat α-amylase/trypsin inhibitors. Thirty-seven AATI polypeptides, about 14 kDa in size, were split into three families named AATI-1, AATI-2, and AATI-3 with different primary structures and isoelectric points. AATI-1 and AATI-2 proteins showed 55.5-60.0 % sequence similarity with wheat α-amylase inhibitors CM1, CM2, and CM16, which have been found to cause innate immunity responses in celiac disease and non-celiac gluten sensitivity. Diploid A-genome and tetraploid AC-genome oat species possess three and five genes encoding for the AATI proteins, respectively, whereas hexaploid A. sativa exhibits 12 genes dispersed over the A-, C-, and D-genomes. Some AATI proteins expressed in hexaploid oats were assigned to the A-genome based on similarity to their counterparts in diploid species, contributing to further clarify the genetic origin of hexaploid oats. Moreover, AATI may interact with starch-bound vromindolines in determining the extra-soft texture of oat kernels and, due to their balanced amino acid compositions, may contribute to the biological value of oat proteins in a positive manner.


Subject(s)
Avena/genetics , Trypsin Inhibitors/isolation & purification , alpha-Amylases/isolation & purification , Avena/metabolism , Diploidy , Genome, Plant , Plant Proteins/genetics , Plant Proteins/isolation & purification , Polyploidy , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Starch/metabolism , alpha-Amylases/genetics
8.
World Allergy Organ J ; 8(1): 13, 2015.
Article in English | MEDLINE | ID: mdl-26023322

ABSTRACT

Allergic rhinitis (AR) is a relevant risk factor for the development of asthma in children. We recruited a cohort of 104 children with AR and re-evaluated them after 5 years. We considered the ARIA classification. All patients, who had moderate to severe persistent AR at baseline, developed asthma symptoms. These results strongly indicate that the severity of AR may be an important factor that increases the risk of asthma development in children.

9.
Planta ; 237(4): 967-78, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23184317

ABSTRACT

The dehydration responsive element binding (DREB) proteins are important transcription factors that contribute to stress endurance in plants triggering the expression of a set of abiotic stress-related genes. A DREB2-related gene, previously referred to as dehydration responsive factor 1 (DRF1) was originally isolated and characterized in durum wheat. The aim of this study was to monitor the expression profiles of three alternatively spliced TdDRF1 transcripts during dehydration experiments and to evaluate the effects of genetic diversity on the molecular response, using experimental conditions reflecting as closely as possible water stress perceived by cereals in open field. To investigate the effect of moderate water stress conditions, time-course dehydration experiments were carried out under controlled conditions in the greenhouse on four durum wheat and one triticale genotypes. Differences were observed in molecular patterns, thus, suggesting a genotype dependency of the DRF1 gene expression in response to the stress induced. The biodiversity of the transcripts of the DRF1 gene was explored in order to assess the level of polymorphism and its possible effects on structure and function of putative proteins. A total of nine haplotypes were identified in the sequences cloned, seven of which encompassing polymorphisms in exon 4, including the region codifying for the DNA binding Apetala2 (AP2) domain. The 3D structural models of the AP2 domain were generated by homology modelling using the variability observed. The polymorphisms analysed did not significantly affect the structural arrangement of the DNA binding domains, thus resulting compatible with the putative functionality.


Subject(s)
Plant Proteins/metabolism , Stress, Physiological , Transcription Factors/metabolism , Triticum/metabolism , Amino Acid Sequence , Genetic Variation , Genotype , Molecular Sequence Data , Plant Proteins/genetics , Structural Homology, Protein , Transcription Factors/genetics , Triticum/genetics , Water/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...